162 research outputs found

    The Crystal Structure of Guanosine Dihydrate and Inosine Dihydrate

    Get PDF
    Crystals of the dihydrates of guanosine (C_(10)H_(13)N_5O_5) and inosine (C_(10)H_(12)N_4O_5) are nearly isostructural. They are monoclinic, space group P2_1, with cell dimensions ɑ = 17·518, b = 11 ·502, c = 6·658 Å, β = 98·17° (guanosine) and ɑ = 17·573, b =11·278, c=6-654 Å, β = 98·23° (inosine). There are two nucleoside molecules and four water molecules per asymmetric unit. Data were collected on an automated diffractometer; the structures were solved by Patterson and trial-and-error methods and refined to R indices of about 0·035. The structure features hydrogen bonding between purine bases to form ribbons parallel to b and parallel stacking of purine bases along c; the separation between adjacent rings within a stack is 3·3 Å. The conformations about the glycosidic C-N bond and the puckerings of the sugar rings arc quite different for the two molecules in the asymmetric unit

    Line Broadening and Decoherence of Electron Spins in Phosphorus-Doped Silicon Due to Environmental 29^Si Nuclear Spins

    Full text link
    Phosphorus-doped silicon single crystals with 0.19 % <= f <= 99.2 %, where f is the concentration of 29^Si isotopes, are measured at 8 K using a pulsed electron spin resonance technique, thereby the effect of environmental 29^Si nuclear spins on the donor electron spin is systematically studied. The linewidth as a function of f shows a good agreement with theoretical analysis. We also report the phase memory time T_M of the donor electron spin dependent on both f and the crystal axis relative to the external magnetic field.Comment: 5 pages, 4 figure

    Host isotope mass effects on the hyperfine interaction of group-V donors in silicon

    Full text link
    The effects of host isotope mass on the hyperfine interaction of group-V donors in silicon are revealed by pulsed electron nuclear double resonance (ENDOR) spectroscopy of isotopically engineered Si single crystals. Each of the hyperfine-split P-31, As-75, Sb-121, Sb-123, and Bi-209 ENDOR lines splits further into multiple components, whose relative intensities accurately match the statistical likelihood of the nine possible average Si masses in the four nearest-neighbor sites due to random occupation by the three stable isotopes Si-28, Si-29, and Si-30. Further investigation with P-31 donors shows that the resolved ENDOR components shift linearly with the bulk-averaged Si mass.Comment: 5 pages, 4 figures, 1 tabl

    Picosecond Nonlinear Relaxation of Photoinjected Carriers in a Single GaAs/AlGaAs Quantum Dot

    Full text link
    Photoemission from a single self-organized GaAs/AlGaAs quantum dot (QD) is temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model which characterizes the successive relaxation of multiexcitons. Through the analysis we can determine the carrier relaxation time as a function of population of photoinjected carriers. Enhancement of the intra-dot carrier relaxation is demonstrated to be due to the carrier-carrier scattering inside a single QD.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B, Rapid

    The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    Full text link
    The condensation of an electron superfluid from a conventional metallic state at a critical temperature TcT_c is described well by the BCS theory. In the underdoped copper-oxides, high-temperature superconductivity condenses instead from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime, appearing at a temperature TCDWT_{CDW} just above TcT_c. The near coincidence of TcT_c and TCDWT_{CDW}, as well the coexistence and competition of CDW and superconducting order below TcT_c, suggests that they are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp\tau_{qp}, as a function of temperature and magnetic field in underdoped HgBa2_{2}CuO4+δ_{4+\delta} (Hg-1201) and YBa2_{2}Cu3_{3}O6+x_{6+x} (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T)\tau_{qp}(T) exhibits a local maximum in a small temperature window near TcT_c that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that TcT_c marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs
    corecore