72 research outputs found

    New routes towards reutericyclin analogues

    Get PDF
    A range of N-acylpyrrolo[3,4-c]isoxazoles and derived N-5 acyltetramides has been prepared via a nitrile oxide dipolar cycloaddition approach, as analogues of the acyltetramic acid metabolite reutericyclin, of interest for their antibiotic potential against Gram-positive bacteria including hospital-acquired infections of resistant Clostridium difficile

    Synthesis, characterization and antibacterial activity studies of new 2‑pyrral‑L‑amino acid Schif base palladium (II) complexes.

    Get PDF
    Three new 2-pyrral amino acid Schif base palladium (II) complexes were synthesized, characterized and their activity against six bacterial species was investigated. The ligands: Potassium 2-pyrrolidine-L-methioninate (L1), Potassium 2-pyrrolidine-L-histidinate (L2) and Potassium 2-pyrrolidine-L-tryptophanate (L3) were synthesized and reacted with dichloro(1,5- cyclooctadiene)palladium(II) to form new palladium (II) complexes C1, C2 and C3, respectively. 1 NMR, FTIR, UV–Vis,elemental analysis and conductivity measurements were used to characterize the products. The antibacterial activities of the compounds were evaluated against Gram-positive Staphylococcus aureus (S. aureus, ATCC 25923), methicillin-resistant Staphylococcus aureus (MRSA, ATCC 33591), Staphylococcus epidermidis (S. epidermidis, ATCC 12228) and Streptococcus pyogenes (S. pyogenes, ATCC 19615) and, gram-negative Pseudomonas aeruginosa (P. aeruginosa, ATCC 27853) and Klebsiella pneumoniae (K. pneumoniae, ATCC 13883) using the agar well difusion assay and microtitre plate serial dilution method. The palladium complexes were active against the selected bacteria with the imidazole ring containing complex C2 and indole heterocyclic ring containing complex C3 showing the highest activity

    Insights into early stage of antibiotic development in small- and medium-sized enterprises: A survey of targets, costs, and durations

    No full text
    Background: Antibiotic innovation has dwindled to dangerously low levels in the past 30 years. Since resistance continues to evolve, this innovation deficit can have perilous consequences on patients. A number of new incentives have been suggested to stimulate greater antibacterial drug innovation. To design effective solutions, a greater understanding is needed of actual antibiotic discovery and development costs and timelines. Small and medium-sized enterprises (SMEs) undertake most discovery and early phase development for antibiotics and other drugs. This paper attempts to gather a better understanding of SMEs' targets, costs, and durations related to discovery and early phase development of antibacterial therapies. Methods: DRIVE-AB, a project focused on developing new economic incentives to stimulate antibacterial innovation, held a European stakeholder meeting in February 2015. All SMEs invited to this meeting (n = 44) were subsequently sent a survey to gather more data regarding their areas of activity, completed and expected development costs and timelines, and business models. Results: Twenty-five companies responded to the survey. Respondents were primarily small companies each focusing on developing 1 to 3 new antibiotics, focused on pathogens of public health importance. Most have not yet completed any clinical trials. They have reported ranges of discovery and development out-of-pocket costs that appear to be less expensive than other studies of general pharmaceutical research and development (R&D) costs. The duration ranges reported for completing each phase of R&D are highly variable when compared to previously published general pharmaceutical innovation average durations. However, our sample population is small and may not be fully representative of all relevant antibiotic SMEs. Conclusions: The data collected by this study provide important insights and estimates about R&D in European SMEs focusing on antibiotics, which can be combined with other data to design incentives to stimulate antibacterial innovation. The variation implies that costs and durations are difficult to generalize due to the unique characteristics of each antibiotic project and depend on individual business strategies and circumstances
    • …
    corecore