3 research outputs found
Recommended from our members
783 nm wavelength stabilized DBR tapered diode lasers with a 7 W output power
Wavelength stabilized distributed Bragg reflector (DBR) tapered diode lasers at 783 nm will be presented. The devices are based on GaAsP single quantum wells embedded in a large optical cavity leading to a vertical far field angle of about 29◦ (full width at half maximum). The 3-inch (7.62 cm) wafers are grown using metalorganic vapor phase epitaxy. In a full wafer process, 4 mm long DBR tapered lasers are manufactured. The devices consist of a 500 µm long 10th order surface DBR grating that acts as rear side mirror. After that, a 1 mm long ridge waveguide section is realized for lateral confinement, which is connected to a 2.5 mm long flared section having a full taper angle of 6◦. At an injection current of 8 A, a maximum output power of about 7 W is measured. At output powers up to 6 W, the measured emission width limited by the resolution of the spectrometer is smaller than 19 pm. Measured at 1/e2 level at this output power, the lateral beam waist width is 11.5 µm, the lateral far field angle 12.5◦, and the lateral beam parameter M2 2.5. The respective parameters measured using the second moments are 31 µm, 15.2◦, and 8.3. 70% of the emitted power is originated from the central lobe. © 2021 Optical Society of Americ
Monolithically integrated multimode interference coupler-based master oscillator power amplifier with dual-wavelength emission around 830 nm
A monolithically integrated dual-wavelength multimode interference coupler-based master oscillator power amplifier is presented. It consists of two shallowly etched, laterally separated ridge waveguide laser cavities as master oscillators with individual distributed Bragg reflector gratings as cavity mirrors. A deeply etched coupling section containing S-bend shaped waveguides and a multimode interference coupler is used to couple the laser emission of the master oscillators into a shallowly etched single waveguide serving as power amplifier. Changing the etch depth for the coupling section enables a compact device layout. In addition, increased radiation angles of modes not coupled into the power amplifier help to suppress beam steering, otherwise indicated by laterally separated far-field intensity distributions. The device provides 0.5 W of dual-wavelength emission around 830 nm in individual and common operation. As designed, both emission wavelengths are separated by 0.5 nm with spectral widths below 20 pm, limited by the spectral resolution of the spectrometer. Both peak wavelengths remain within spectral windows of 50 pm within the available power range. This enables full flexibility selecting operating points for applications such as shifted excitation Raman difference spectroscopy and the generation of THz emission by photomixing. The emission wavelengths can additionally be non-continuously tuned by applying a heater current to resistors implemented next to the distributed Bragg reflector gratings. As an example, selected spectral distances of 0.5 nm, 1.0 nm, 1.5 nm, and 2.0 nm are demonstrated. Near field widths of 5 μ m and far field angles of 17° result in beam propagation ratios of 1.4 (1/e ^2 ) in all operation modes and enable easy beam shaping or optical single-mode fiber coupling
Continuous wave THz system based on an electrically tunable monolithic dual wavelength Y-branch DBR diode laser
We analyse the use of a tunable dual wavelength Y-branch DBR laser diode for THz applications. The laser generates electrically tunable THz difference frequencies in the range between 100 and 300 GHz. The optical beats are tuned via current injection into a micro-resistor heater integrated on top of one of the distributed Bragg reflector (DBR) section of the diode. The laser is integrated in a homodyne THz system employing fiber coupled ion-implanted LT-GaAs log spiral antennas. The applicability of the developed system in THz spectroscopy is demonstrated by evaluating the spectral resonances of a THz filter as well as in THz metrology in thickness determination of a polyethylene sample