17 research outputs found

    Invasive species

    Get PDF
    Globally, about 2,000 marine non-indigeÂŹnous species (NIS) have been introduced to new locations through human-mediated movements. A few of those have economÂŹic value, but most have had negative ecoÂŹlogical, socioeconomic or human health impacts. With increased trade and climate change, biological invasions are likely to increase

    Leaving the fish bowl: The ornamental trade as a global vector for freshwater fish invasions

    No full text
    Despite its social and economic benefits, the trade in ornamental species (henceforth, ‘ornamental trade’) has become a major source of non-native fish introductions into freshwater ecosystems. However, the ornamental trade as a vector for introductions of non-native freshwater fishes is not well defined. We developed a framework incorporating elements of the biological invasion process and a typical ornamental fish trade supply chain to fill this gap. Records of non-native ornamental fishes introduced to freshwater environments of Australia, Belgium (Flanders), Canada (British Columbia), China (Guangdong), the Philippines, Poland, Singapore, the United Kingdom (England), and the United States of America (Florida) were reviewed to explore the pervasiveness of these introduced fishes in the wild. These regional case studies confirmed the prominence of the ornamental trade as a global vector for freshwater fish introductions beyond their natural range. Additionally, we examined freshwater fishes associated with the ornamental trade to identify ‘risky’ species that could establish in recipient regions based on climate match. All regions assessed were at risk of new fish introductions via the ornamental trade, with the number of ‘risky’ species ranging from seven to 256. Further, there appears to be taxonomic bias in the freshwater ornamental fish trade, with 74% of the species belonging to just 10 families (of 67). Current prevention and management approaches and associated polices, regulations and legislation on aquatic non-native species within assessed regions fit five general categories: import controls, risk assessment, whitelist, blacklist, and release ban. However, these prevention/management efforts may not be sufficient to reduce the invasion risk associated with the ornamental fish trade. Recommendations including species- and vector-based risk assessments, better recording of species import consignments, increased public education and industry engagement, and early detection and rapid response are discussed in this review

    Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: a 50-year perspective

    Get PDF
    Aim The introduction of aquatic non-indigenous species (ANS) has become a major driver for global changes in species biogeography. We examined spatial patterns and temporal trends of ANS detections since 1965 to inform conservation policy and management. Location Global. Methods We assembled an extensive dataset of first records of detection of ANS (1965–2015) across 49 aquatic ecosystems, including the (a) year of first collection, (b) population status and (c) potential pathway(s) of introduction. Data were analysed at global and regional levels to assess patterns of detection rate, richness and transport pathways. Results An annual mean of 43 (±16 SD) primary detections of ANS occurred—one new detection every 8.4 days for 50 years. The global rate of detections was relatively stable during 1965–1995, but increased rapidly after this time, peaking at roughly 66 primary detections per year during 2005–2010 and then declining marginally. Detection rates were variable within and across regions through time. Arthropods, molluscs and fishes were the most frequently reported ANS. Most ANS were likely introduced as stowaways in ships’ ballast water or biofouling, although direct evidence is typically absent. Main conclusions This synthesis highlights the magnitude of recent ANS detections, yet almost certainly represents an underestimate as many ANS go unreported due to limited search effort and diminishing taxonomic expertise. Temporal rates of detection are also confounded by reporting lags, likely contributing to the lower detection rate observed in recent years. There is a critical need to implement standardized, repeated methods across regions and taxa to improve the quality of global-scale comparisons and sustain core measures over longer time-scales. It will be fundamental to fill in knowledge gaps given that invasion data representing broad regions of the world's oceans are not yet readily available and to maintain knowledge pipelines for adaptive management
    corecore