10 research outputs found

    Tools for automated acoustic monitoring within the R package monitoR

    No full text
    <p>The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors.</p

    Present and predicted connectivity for lynx.

    No full text
    <p>Present (a) and predicted future (b) connectivity for lynx between conserved areas of natural habitat in northeastern and southeastern Maine (left and middle, respectively), and between confirmed uncollared lynx locations from ME, NH, and VT (right). The core polygons have a cost distance of 0, and are the basis of the orange areas in the maps. Connective habitat for lynx is defined as pixels with a cost distance value ≤1,172,610 (small arrow on legend). Future connectivity between conserved areas was predicted only where anthropogenic change has been estimated by Trombulak et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0194243#pone.0194243.ref030" target="_blank">30</a>].</p

    Subportion of area where connectivity is expected to decline.

    No full text
    <p>The impact of future development on connective habitat for bobcats in a portion of southeastern Maine around Auburn and Lewiston. Black describes areas of connective habitat, white defines pixels with a cost distance value greater than 125,000, above the maximum cost distance value used by bobcats.</p

    Landscape connectivity for bobcat (<i>Lynx rufus</i>) and lynx (<i>Lynx canadensis</i>) in the Northeastern United States

    No full text
    <div><p>Landscape connectivity is integral to the persistence of metapopulations of wide ranging carnivores and other terrestrial species. The objectives of this research were to investigate the landscape characteristics essential to use of areas by lynx and bobcats in northern New England, map a habitat availability model for each species, and explore connectivity across areas of the region likely to experience future development pressure. A Mahalanobis distance analysis was conducted on location data collected between 2005 and 2010 from 16 bobcats in western Vermont and 31 lynx in northern Maine to determine which variables were most consistent across all locations for each species using three scales based on average 1) local (15 minute) movement, 2) linear distance between daily locations, and 3) female home range size. The bobcat model providing the widest separation between used locations and random study area locations suggests that they cue into landscape features such as edge, availability of cover, and development density at different scales. The lynx model with the widest separation between random and used locations contained five variables including natural habitat, cover, and elevation—all at different scales. Shrub scrub habitat—where lynx’s preferred prey is most abundant—was represented at the daily distance moved scale. Cross validation indicated that outliers had little effect on models for either species. A habitat suitability value was calculated for each 30 m<sup>2</sup> pixel across Vermont, New Hampshire, and Maine for each species and used to map connectivity between conserved lands within selected areas across the region. Projections of future landscape change illustrated potential impacts of anthropogenic development on areas lynx and bobcat may use, and indicated where connectivity for bobcats and lynx may be lost. These projections provided a guide for conservation of landscape permeability for lynx, bobcat, and species relying on similar habitats in the region.</p></div

    Present and predicted connectivity for bobcats.

    No full text
    <p>Present (a) and predicted future (b) connectivity for bobcats between conserved areas of natural habitat in the Champlain Valley Biophysical Region (upper left), the Northern Piedmont area of Vermont (upper right) and below, along the Route 2 corridor from Vermont into southern Maine (bottom). The core polygons have a cost distance of 0, and are the basis of the orange areas in the maps. Connective habitat for bobcats is defined as pixels with a cost distance value ≤ 125,000 (small arrow on legend). Future connectivity between conserved areas was predicted only where anthropogenic change has been estimated by Trombulak et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0194243#pone.0194243.ref030" target="_blank">30</a>].</p

    Cumulative frequency distribution curves.

    No full text
    <p>Cumulative frequency curve of <i>P</i>–values for bobcat (a) and lynx (b) locations, random locations within the study area, and random locations from the Northeastern region. Triangles indicate the location of maximum separation between species and random locations from each study area.</p
    corecore