19 research outputs found

    Smoking decreases the response of human lung macrophages to double-stranded RNA by reducing TLR3 expression

    Full text link
    Abstract Background Cigarette smoking is associated with increased frequency and duration of viral respiratory infections, but the underlying mechanisms are incompletely defined. We investigated whether smoking reduces expression by human lung macrophages (Mø) of receptors for viral nucleic acids and, if so, the effect on CXCL10 production. Methods We collected alveolar macrophages (AMø) by bronchoalveolar lavage of radiographically-normal lungs of subjects undergoing bronchoscopies for solitary nodules (n = 16) and of volunteers who were current or former smokers (n = 7) or never-smokers (n = 13). We measured expression of mRNA transcripts for viral nucleic acid receptors by real-time PCR in those AMø and in the human Mø cell line THP-1 following phorbol myristate acetate/vitamin D3 differentiation and exposure to cigarette smoke extract, and determined TLR3 protein expression using flow cytometry and immunohistochemistry. We also used flow cytometry to examine TLR3 expression in total lung Mø from subjects undergoing clinically-indicated lung resections (n = 25). Of these, seven had normal FEV1 and FEV1/FVC ratio (three former smokers, four current smokers); the remaining 18 subjects (14 former smokers; four current smokers) had COPD of GOLD stages I-IV. We measured AMø production of CXCL10 in response to stimulation with the dsRNA analogue poly(I:C) using Luminex assay. Results Relative to AMø of never-smokers, AMø of smokers demonstrated reduced protein expression of TLR3 and decreased mRNA for TLR3 but not TLR7, TLR8, TLR9, RIG-I, MDA-5 or PKR. Identical changes in TLR3 gene expression were induced in differentiated THP-1 cells exposed to cigarette smoke-extract in vitro for 4 hours. Among total lung Mø, the percentage of TLR3-positive cells correlated inversely with active smoking but not with COPD diagnosis, FEV1% predicted, sex, age or pack-years. Compared to AMø of never-smokers, poly(I:C)-stimulated production of CXCL10 was significantly reduced in AMø of smokers. Conclusions Active smoking, independent of COPD stage or smoking duration, reduces both the percent of human lung Mø expressing TLR3, and dsRNA-induced CXCL10 production, without altering other endosomal or cytoplasmic receptors for microbial nucleic acids. This effect provides one possible mechanism for increased frequency and duration of viral lower respiratory tract infections in smokers. Trial registration ClinicalTrials.gov NCT00281190 , NCT00281203 and NCT00281229 .http://deepblue.lib.umich.edu/bitstream/2027.42/134585/1/12931_2012_Article_1336.pd

    Lung Dendritic Cell Expression of Maturation Molecules Increases with Worsening Chronic Obstructive Pulmonary Disease

    No full text
    Rationale: Dendritic cells (DCs) have not been well studied in chronic obstructive pulmonary disease (COPD), yet their integral role in activating and differentiating T cells makes them potential participants in COPD pathogenesis

    Cytotoxic potential of lung CD8+ T cells increases with COPD severity and with in vitro stimulation with IL-18 or IL-15

    Full text link
    Lung CD8+ T cells might contribute to progression of chronic obstructive pulmonary disease (COPD) indirectly via IFN-gamma production or directly via cytolysis, but evidence for either mechanism is largely circumstantial. To gain insights into these potential mechanisms, we analyzed clinically indicated lung resections from three human cohorts, correlating findings with spirometrically defined disease severity. Expression by lung CD8+ T cells of IL-18R and CD69 correlated with severity, as did mRNA transcripts for perforin and granzyme B, but not Fas ligand. These correlations persisted after correction for age, smoking history, presence of lung cancer, recent respiratory infection, or inhaled corticosteroid use. Analysis of transcripts for killer cell lectin-like receptor G1, IL-7R, and CD57 implied that lung CD8+ T cells in COPD do not belong to the terminally differentiated effector populations associated with chronic infections or extreme age. In vitro stimulation of lung CD8+ T cells with IL-18 plus IL-12 markedly increased production of IFN-gamma and TNF-alpha, whereas IL-15 stimulation induced increased intracellular perforin expression. Both IL-15 and IL-18 protein expression could be measured in whole lung tissue homogenates, but neither correlated in concentration with spirometric severity. Although lung CD8+ T cell expression of mRNA for both T-box transcription factor expressed in T cells and GATA-binding protein 3 (but not retinoic acid receptor-related orphan receptor gamma or alpha) increased with spirometric severity, stimulation of lung CD8+ T cells via CD3epsilon-induced secretion of IFN-gamma, TNF-alpha, and GM-CSF, but not IL-5, IL-13, and IL-17A. These findings suggest that the production of proinflammatory cytokines and cytotoxic molecules by lungresident CD8+ T cells contributes to COPD pathogenesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91952/1/2010 Journal of Immunology Cytotoxic potential of lung CD8+ T cells increases with COPD severity and with in vitro stimulation with IL-18 or IL-15.pd
    corecore