31 research outputs found

    Impaired limb shortening following stroke: what's in a name?

    Get PDF
    BackgroundDifficulty advancing the paretic limb during the swing phase of gait is a prominent manifestation of walking dysfunction following stroke. This clinically observable sign, frequently referred to as 'foot drop', ostensibly results from dorsiflexor weakness.ObjectiveHere we investigated the extent to which hip, knee, and ankle motions contribute to impaired paretic limb advancement. We hypothesized that neither: 1) minimal toe clearance and maximal limb shortening during swing nor, 2) the pattern of multiple joint contributions to toe clearance and limb shortening would differ between post-stroke and non-disabled control groups.MethodsWe studied 16 individuals post-stroke during overground walking at self-selected speed and nine non-disabled controls who walked at matched speeds using 3D motion analysis.ResultsNo differences were detected with respect to the ankle dorsiflexion contribution to toe clearance post-stroke. Rather, hip flexion had a greater relative influence, while the knee flexion influence on producing toe clearance was reduced.ConclusionsSimilarity in the ankle dorsiflexion, but differences in the hip and knee, contributions to toe clearance between groups argues strongly against dorsiflexion dysfunction as the fundamental impairment of limb advancement post-stroke. Marked reversal in the roles of hip and knee flexion indicates disruption of inter-joint coordination, which most likely results from impairment of the dynamic contribution to knee flexion by the gastrocnemius muscle in preparation for swing. These findings suggest the need to reconsider the notion of foot drop in persons post-stroke. Redirecting the focus of rehabilitation and restoration of hemiparetic walking dysfunction appropriately, towards contributory neuromechanical impairments, will improve outcomes and reduce disability

    Does inhibitory repetitive transcranial magnetic stimulation augment functional task practice to improve arm recovery in chronic stroke?

    Get PDF
    Introduction. Restoration of upper extremity (UE) functional use remains a challenge for individuals following stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive modality that modulates cortical excitability and is being explored as a means to potentially ameliorate these deficits. The purpose of this study was to evaluate, in the presence of chronic stroke, the effects of low-frequency rTMS to the contralesional hemisphere as an adjuvant to functional task practice (FTP), to improve UE functional ability. Methods. Twenty-two individuals with chronic stroke and subsequent moderate UE deficits were randomized to receive 16 sessions (4 times/week for 4 weeks) of either real-rTMS or sham-rTMS followed by 1-hour of paretic UE FTP. Results. No differences in UE outcomes were revealed between the real-rTMS and sham-rTMS intervention groups. After adjusting for baseline differences, no differences were revealed in contralesional cortical excitability postintervention. In a secondary analysis, data pooled across both groups revealed small, but statistically significant, improvements in UE behavioral measures. Conclusions. rTMS did not augment changes in UE motor ability in this population of individuals with chronic stroke. The chronicity of our participant cohort and their degree of UE motor impairment may have contributed to inability to produce marked effects using rTMS

    Does Inhibitory Repetitive Transcranial Magnetic Stimulation Augment Functional Task Practice to Improve Arm Recovery in Chronic Stroke?

    Get PDF
    Introduction. Restoration of upper extremity (UE) functional use remains a challenge for individuals following stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive modality that modulates cortical excitability and is being explored as a means to potentially ameliorate these deficits. The purpose of this study was to evaluate, in the presence of chronic stroke, the effects of low-frequency rTMS to the contralesional hemisphere as an adjuvant to functional task practice (FTP), to improve UE functional ability. Methods. Twenty-two individuals with chronic stroke and subsequent moderate UE deficits were randomized to receive 16 sessions (4 times/week for 4 weeks) of either real-rTMS or sham-rTMS followed by 1-hour of paretic UE FTP. Results. No differences in UE outcomes were revealed between the real-rTMS and sham-rTMS intervention groups. After adjusting for baseline differences, no differences were revealed in contralesional cortical excitability postintervention. In a secondary analysis, data pooled across both groups revealed small, but statistically significant, improvements in UE behavioral measures. Conclusions. rTMS did not augment changes in UE motor ability in this population of individuals with chronic stroke. The chronicity of our participant cohort and their degree of UE motor impairment may have contributed to inability to produce marked effects using rTMS

    Impaired limb shortening following stroke: what's in a name?

    No full text
    Difficulty advancing the paretic limb during the swing phase of gait is a prominent manifestation of walking dysfunction following stroke. This clinically observable sign, frequently referred to as 'foot drop', ostensibly results from dorsiflexor weakness.Here we investigated the extent to which hip, knee, and ankle motions contribute to impaired paretic limb advancement. We hypothesized that neither: 1) minimal toe clearance and maximal limb shortening during swing nor, 2) the pattern of multiple joint contributions to toe clearance and limb shortening would differ between post-stroke and non-disabled control groups.We studied 16 individuals post-stroke during overground walking at self-selected speed and nine non-disabled controls who walked at matched speeds using 3D motion analysis.No differences were detected with respect to the ankle dorsiflexion contribution to toe clearance post-stroke. Rather, hip flexion had a greater relative influence, while the knee flexion influence on producing toe clearance was reduced.Similarity in the ankle dorsiflexion, but differences in the hip and knee, contributions to toe clearance between groups argues strongly against dorsiflexion dysfunction as the fundamental impairment of limb advancement post-stroke. Marked reversal in the roles of hip and knee flexion indicates disruption of inter-joint coordination, which most likely results from impairment of the dynamic contribution to knee flexion by the gastrocnemius muscle in preparation for swing. These findings suggest the need to reconsider the notion of foot drop in persons post-stroke. Redirecting the focus of rehabilitation and restoration of hemiparetic walking dysfunction appropriately, towards contributory neuromechanical impairments, will improve outcomes and reduce disability

    Impaired Limb Shortening following Stroke: What's in a Name?

    No full text
    Abstract Background: Difficulty advancing the paretic limb during the swing phase of gait is a prominent manifestation of walking dysfunction following stroke. This clinically observable sign, frequently referred to as 'foot drop', ostensibly results from dorsiflexor weakness

    Evidence for shared neural information between muscle synergies and corticospinal efficacy.

    No full text
    Stroke survivors often exhibit gait dysfunction which compromises self-efficacy and quality of life. Muscle Synergy Analysis (MSA), derived from electromyography (EMG), has been argued as a method to quantify the complexity of descending motor commands and serve as a direct correlate of neural function. However, controversy remains regarding this interpretation, specifically attribution of MSA as a neuromarker. Here we sought to determine the relationship between MSA and accepted neurophysiological parameters of motor efficacy in healthy controls, high (HFH), and low (LFH) functioning stroke survivors. Surface EMG was collected from twenty-four participants while walking at their self-selected speed. Concurrently, transcranial magnetic stimulation (TMS) was administered, during walking, to elicit motor evoked potentials (MEPs) in the plantarflexor muscles during the pre-swing phase of gait. MSA was able to differentiate control and LFH individuals. Conversely, motor neurophysiological parameters, including soleus MEP area, revealed that MEP latency differentiated control and HFH individuals. Significant correlations were revealed between MSA and motor neurophysiological parameters adding evidence to our understanding of MSA as a correlate of neural function and highlighting the utility of combining MSA with other relevant outcomes to aid interpretation of this analysis technique
    corecore