8 research outputs found
Developing an infrastructure for secure patient summary exchange in the EU context: Lessons learned from the KONFIDO project
Background: The increase of healthcare digitalization comes along with potential information security risks. Thus, the EU H2020 KONFIDO project aimed to provide a toolkit supporting secure cross-border health data exchange. Methods: KONFIDO focused on the so-called “User Goals”, while also identifying barriers and facilitators regarding eHealth acceptance. Key user scenarios were elaborated both in terms of threat analysis and legal challenges. Moreover, KONFIDO developed a toolkit aiming to enhance the security of OpenNCP, the reference implementation framework. Results: The main project outcomes are highlighted and the “Lessons Learned,” the technical challenges and the EU context are detailed. Conclusions: The main “Lessons Learned” are summarized and a set of recommendations is provided, presenting the position of the KONFIDO consortium toward a robust EU-wide health data exchange infrastructure. To this end, the lack of infrastructure and technical capacity is highlighted, legal and policy challenges are identified and the need to focus on usability and semantic interoperability is emphasized. Regarding technical issues, an emphasis on transparent and standards-based development processes is recommended, especially for landmark software projects. Finally, promoting mentality change and knowledge dissemination is also identified as key step toward the development of secure cross-border health data exchange services
Deoxycholate amphotericin B and amphotericin B lipid complex exert additive antifungal activity in combination with pulmonary alveolar macrophages against Fusarium solani.
Fusarium spp. have emerged as important causes of invasive fungal infections in immunocompromised patients. Rabbit pulmonary alveolar macrophages (PAMs) exhibited fungicidal activity against conidia of Fusarium solani and achieved a time-dependent increase in killing. Neither deoxycholate amphotericin B (DAMB) nor amphotericin B lipid complex (ABLC) exerted a suppressive effect on PAMs by decreasing their conidiocidal activity against F. solani. On the contrary, at a concentration of 0.125 microg ml(-1), ABLC and, to a lesser degree, DAMB additively augmented the fungicidal activity of pulmonary alveolar macrophages against conidia of Fusarium solani
Human phagocytic cell responses to Scedosporium apiospermum (Pseudallescheria boydii): variable susceptibility to oxidative injury.
Scedosporium apiospermum (Pseudallescheria boydii) is an emerging opportunistic filamentous fungus that causes serious infections in both immunocompetent and immunocompromised patients. To gain insight into the immunopathogenesis of infections due to S. apiospermum, the antifungal activities of human polymorphonuclear leukocytes (PMNs), mononuclear leukocytes (MNCs), and monocyte-derived macrophages (MDMs) against two clinical isolates of S. apiospermum were evaluated. Isolate SA54A was amphotericin B resistant and was the cause of a fatal disseminated infection. Isolate SA1216 (cultured from a successfully treated localized subcutaneous infection) was susceptible to amphotericin B. MDMs exhibited similar phagocytic activities against conidia of both isolates. However, PMNs and MNCs responded differently to the hyphae of these two isolates. Serum opsonization of hyphae resulted in a higher level of superoxide anion (O(2)(-)) release by PMNs in response to SA54A (amphotericin B resistant) than that seen in response to SA1216 (amphotericin B susceptible; P < 0.001). Despite this increased O(2)(-) production, PMNs and MNCs induced less hyphal damage to SA54A than to SA1216 (P < 0.001). To investigate the potential mechanisms responsible for these differences, hyphal damage was evaluated in the presence of antifungal oxidative metabolites as well as in the presence of a series of inhibitors and scavengers of antifungal PMN function. Mannose, catalase, superoxide dismutase, dimethyl sulfoxide, and heparin had no effect on PMN-induced hyphal damage to either of the two isolates. However, azide, which inhibits PMN myeloperoxidase activity, significantly reduced hyphal damage to SA1216 (P < 0.01) but not to SA54A. Hyphae of SA1216 were slightly more susceptible to oxidative pathway products, particularly HOCl, than those of SA54A. Thus, S. apiospermum is susceptible to antifungal phagocytic function to various degrees. The selective inhibitory pattern of azide with respect to hyphal damage and the parallel susceptibility to HOCl suggests an important difference in susceptibilities to myeloperoxidase products that may be related to the various levels of pathogenicity and amphotericin B resistance of S. apiospermum
Combination therapy in treatment of experimental pulmonary aspergillosis: In vitro and in vivo correlations of the concentration- and dose-dependent interactions between anidulafungin and voriconazole by bliss independence drug interaction analysis
We studied the antifungal activity of anidulafungin (AFG) in combination with voriconazole (VRC) against experimental invasive pulmonary aspergillosis (IPA) in persistently neutropenic rabbits and further explored the in vitro and in vivo correlations by using Bliss independence drug interaction analysis. Treatment groups consisted of those receiving AFG at 5 (AFG5 group) and 10 (AFG10 group) mg/kg of body weight/day, VRC at 10 mg/kg every 8 h (VRC group), AFG5 plus VRC (AFG5+VRC group), and AFG10 plus VRC (AFG10+VRC group) and untreated controls. Survival throughout the study was 60% for the AFG5+VRC group, 50% for the VRC group, 27% for the AFG10+VRC group, 22% for the AFG5 group, 18% for the AFG10 group, and 0% for control rabbits (P < 0.001). There was a significant reduction of organism-mediated pulmonary injury, measured by infarct scores, lung weights, residual fungal burdens, and galactomannan indexes, in AFG5+VRC-treated rabbits versus those treated with AFG5 and VRC alone (P < 0.05). In comparison, AFG10+VRC significantly lowered only infarct scores and lung weights in comparison to those of AFG10-treated animals (P < 0.05). AFG10+VRC showed no significant difference in other outcome variables. Significant Bliss synergy was found in vivo between AFG5 and VRC, with observed effects being 24 to 30% higher than expected levels if the drugs were acting independently. These synergistic interactions were also found between AFG and VRC in vitro. However, for AFG10+VRC, only independence and antagonism were observed among the outcome variables. We concluded that the combination of AFG with VRC in treatment of experimental IPA in persistently neutropenic rabbits was independent to synergistic at a dosage of 5 mg/kg/day but independent to antagonistic at 10 mg/kg/day, as assessed by Bliss independence analysis, suggesting that higher dosages of an echinocandin may be deleterious to the combination
Clinical pharmacology of antifungal agents to overcome drug resistance in pediatric patients
peer reviewedINTRODUCTION: Antifungal resistance is an emerging problem that increases morbidity and mortality in immunosuppressed pediatric patients, who suffer from invasive fungal diseases. Optimal pharmacological management is critical for the successful treatment of invasive fungal infections by resistant strains. AREAS COVERED: This paper reviews the mechanisms of resistance of different classes of antifungal agents and the current understanding of pediatric antifungal pharmacology for overcoming antifungal resistance in children based on laboratory and clinical studies in the English literature. The therapeutic choices against fungal pathogens with intrinsic or acquired resistance are further reviewed. EXPERT OPINION: There is a paucity of data in the pediatric population regarding the epidemiology of the resistant organisms to different antifungal agents. It is also unknown if there are more prevalent molecular mechanisms that promote antifungal resistance. Selection and dosages of the most effective antifungal agent for overcoming the antifungal resistance is crucial. However, there are limited studies guiding the optimal dosage and duration of treatment for management of emergent antifungal resistance. Further studies are warranted to elucidate the optimal pharmacology of the current antifungal agents against resistant organisms and to advance the development of new antifungal agents