31 research outputs found

    Federated deep learning for intrusion detection in IoT networks

    Get PDF
    The vast increase of Internet of Things (IoT) technologies and the ever-evolving attack vectors have increased cyber-security risks dramatically. A common approach to implementing AI-based Intrusion Detection Systems (IDSs) in distributed IoT systems is in a centralised manner. However, this approach may violate data privacy and prohibit IDS scalability. Therefore, intrusion detection solutions in IoT ecosystems need to move towards a decentralised direction. Federated Learning (FL) has attracted significant interest in recent years due to its ability to perform collaborative learning while preserving data confidentiality and locality. Nevertheless, most FL-based IDS for IoT systems are designed under unrealistic data distribution conditions. To that end, we design an experiment representative of the real-world and evaluate the performance of an FL-based IDS. For our experiments, we rely on TON-IoT, a realistic IoT network traffic dataset, associating each IP address with a single FL client. Additionally, we explore pre-training and investigate various aggregation methods to mitigate the impact of data heterogeneity. Lastly, we benchmark our approach against a centralised solution. The comparison shows that the heterogeneous nature of the data has a considerable negative impact on the model's performance when trained in a distributed manner. However, in the case of a pre-trained initial global FL model, we demonstrate a performance improvement of over 20% (F1-score) compared to a randomly initiated global model

    Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Get PDF
    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts

    LE3D: A lightweight ensemble framework of data drift detectors for resource-constrained devices

    Get PDF
    Data integrity becomes paramount as the number of Internet of Things (IoT) sensor deployments increases. Sensor data can be altered by benign causes or malicious actions. Mechanisms that detect drifts and irregularities can prevent disruptions and data bias in the state of an IoT application. This paper presents LE3D, an ensemble framework of data drift estimators capable of detecting abnormal sensor behaviours. Working collaboratively with surrounding IoT devices, the type of drift (natural/abnormal) can also be identified and reported to the end-user. The proposed framework is a lightweight and unsupervised implementation able to run on resource constrained IoT devices. Our framework is also generalisable, adapting to new sensor streams and environments with minimal online reconfiguration. We compare our method against state of-the-art ensemble data drift detection frameworks, evaluating both the real-world detection accuracy as well as the resource utilisation of the implementation. Experimenting with real-world data and emulated drifts, we show the effectiveness of our method, which achieves up to 97% of detection accuracy while requiring minimal resources to run

    Cybersecurity in motion: A survey of challenges and requirements for future test facilities of CAVs

    Get PDF
    The way we travel is changing rapidly and Cooperative Intelligent Transportation Systems (C-ITSs) are at the forefront of this evolution. However, the adoption of C-ITSs introduces new risks and challenges, making cybersecurity a top priority for ensuring safety and reliability. Building on this premise, this paper introduces an envisaged Cybersecurity Centre of Excellence (CSCE) designed to bolster researching, testing, and evaluating the cybersecurity of C-ITSs. We explore the design, functionality, and challenges of CSCE's testing facilities, outlining the technological, security, and societal requirements. Through a thorough survey and analysis, we assess the effectiveness of these systems in detecting and mitigating potential threats, highlighting their flexibility to adapt to future C-ITSs. Finally, we identify current unresolved challenges in various C-ITS domains, with the aim of motivating further research into the cybersecurity of C-ITSs

    Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

    Get PDF
    The way we travel is changing rapidly and Cooperative Intelligent Transportation Systems (C-ITSs) are at the forefront of this evolution. However, the adoption of C-ITSs introduces new risks and challenges, making cybersecurity a top priority for ensuring safety and reliability. Building on this premise, this paper introduces an envisaged Cybersecurity Centre of Excellence (CSCE) designed to bolster researching, testing, and evaluating the cybersecurity of C-ITSs. We explore the design, functionality, and challenges of CSCE's testing facilities, outlining the technological, security, and societal requirements. Through a thorough survey and analysis, we assess the effectiveness of these systems in detecting and mitigating potential threats, highlighting their flexibility to adapt to future C-ITSs. Finally, we identify current unresolved challenges in various C-ITS domains, with the aim of motivating further research into the cybersecurity of C-ITSs

    Evaluation of Reanalysis Data in Meteorological and Climatological Applications: Spatial and Temporal Considerations

    No full text
    Reanalysis datasets are among the most used gridded data for the study of weather and climate [...
    corecore