54 research outputs found

    Characterization and differentiation of the tumor microenvironment (TME) of orthotopic and subcutaneously grown head and neck squamous cell carcinoma (HNSCC) in immunocompetent mice

    Get PDF
    For the development and evaluation of new head and neck squamous cell carcinoma (HNSCC) therapeutics, suitable, well-characterized animal models are needed. Thus, by analyzing orthotopic versus subcutaneous models of HNSCC in immunocompetent mice, we evaluated the existence of adenosine-related immunosuppressive B- and T lymphocyte populations within the tumor microenvironment (TME). Applying the SCC VII model for the induction of HNSCC in immunocompetent C3H/HeN mice, the cellular TME was characterized after tumor initiation over time by flow cytometry. The TME in orthotopic grown tumors revealed a larger population of tumor-infiltrating lymphocytes (TIL) with more B cells and CD4+ T cells than the subcutaneously grown tumors. Immune cell populations in the blood and bone marrow showed a rather distinct reaction toward tumor induction and tumor location compared to the spleen, lymph nodes, or thymus. In addition, large numbers of immunosuppressive B- and T cells were identified within the TME but also in secondary lymphoid organs, independently of the tumor initiation site. The altered immunogenic TME may influence the response to any treatment attempt. Moreover, when analyzing the TME and other lymphoid organs of tumor-bearing mice, we observed conditions reflecting largely those of patients suffering from HNSCC suggesting the C3H/HeN mouse model as a suitable tool for studies aiming to target immunosuppression to improve anti-cancer therapies

    NF-ÎșB and its role in checkpoint control

    Get PDF
    Nuclear factor-ÎșB (NF-ÎșB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-ÎșB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-ÎșB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-ÎșB directly or molecules involved in NF-ÎșB regulation in combination with immune checkpoint blockade

    Enhanced cellular migration and prolonged chondrogenic differentiation in decellularized cartilage scaffolds under dynamic culture conditions

    Get PDF
    Lesions of aural, nasal and tracheal cartilage are frequently reconstructed by complex surgeries which are based on harvesting autologous cartilage from other locations such as the rib. Cartilage tissue engineering (CTE) is regarded as a promising alternative to attain vital cartilage. Nevertheless, CTE with nearly natural properties poses a significant challenge to research due to the complex reciprocal interactions between cells and extracellular matrix which have to be imitated and which are still not fully understood. Thus, we used a custom-made glass bioreactor to enhance cell migration into decellularized porcine cartilage scaffolds (DECM) and mimic physiological conditions. The DECM seeded with human nasal chondrocytes (HPCH) were cultured in the glass reactor for 6 weeks and examined by histological and immunohistochemical staining, biochemical analyses and real time-PCR at 14, 28 and 42 days. The migration depth and the number of migrated cells were quantified by computational analysis. Compared to the static cultivation, the dynamic culture (DC) fostered migration of HPCH into deeper tissue layers. Furthermore, cultivation in the bioreactor enhanced differentiation of the cells during the first 14 days, but differentiation diminished in the course of further cultivation. We consider the DC in the presented bioreactor as a promising tool to facilitate CTE and to help to better understand the complex physiological processes during cartilage regeneration. Maintaining differentiation of chondrocytes and improving cellular migration by further optimizing culture conditions is an important prerequisite for future clinical application

    Circulating exosomes inhibit B cell proliferation and activity

    Get PDF
    (1) Background: Head and neck squamous cell carcinoma (HNSCC) is characterized by a distinctive suppression of the anti-tumor immunity, both locally in the tumor microenvironment (TME) and the periphery. Tumor-derived exosomes mediate this immune suppression by directly suppressing T effector function and by inducing differentiation of regulatory T cells. However, little is known about the effects of exosomes on B cells. (2) Methods: Peripheral B cells from healthy donors and HNSCC patients were isolated and checkpoint receptor expression was analyzed by flow cytometry. Circulating exosomes were isolated from the plasma of HNSCC patients (n = 21) and healthy individuals (n = 10) by mini size-exclusion chromatography. B cells from healthy individuals were co-cultured with isolated exosomes for up to 4 days. Proliferation, viability, surface expression of checkpoint receptors, and intracellular signaling were analyzed in B cells by flow cytometry. (3) Results: Expression of the checkpoint receptors PD-1 and LAG3 was increased on B cells from HNSCC patients. The protein concentration of circulating exosomes was increased in HNSCC patients as compared to healthy donors. Both exosomes from healthy individuals and HNSCC patients inhibited B cell proliferation and survival, in vitro. Surface expression of inhibitory and stimulatory checkpoint receptors on B cells was modulated in co-culture with exosomes. In addition, an inhibitory effect of exosomes on B cell receptor (BCR) signaling was demonstrated in B cells. (4) Conclusions: Plasma-derived exosomes show inhibitory effects on the function of healthy B cells. Interestingly, these inhibitory effects are similar between exosomes from healthy individuals and HNSCC patients, suggesting a physiological B cell inhibitory role of circulating exosomes

    Immune checkpoint expression on immune cells of HNSCC patients and modulation by chemo- and immunotherapy

    Get PDF
    Endogenous control mechanisms, including immune checkpoints and immunosuppressive cells, are exploited in the process of tumorigenesis to weaken the anti-tumor immune response. Cancer treatment by chemotherapy or immune checkpoint inhibition can lead to changes of checkpoint expression, which influences therapy success. Peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) were isolated from head and neck squamous cell carcinoma (HNSCC) patients (n = 23) and compared to healthy donors (n = 23). Immune checkpoint expression (programmed cell death ligand 1 (PD-1), tumor necrosis factor receptor (TNFR)-related (GITR), CD137, tumor necrosis factor receptor superfamily member 4 (TNFRSF4) (OX40), t-cell immunoglobulin and mucin-domain containing-3 (TIM3), B- and T-lymphocyte attenuator (BTLA), lymphocyte-activation gene 3 (LAG3)) was determined on immune cells by flow cytometry. PD-L1 expression was detected on tumor tissue by immunohistochemistry. Immune cells were treated with immuno- and chemotherapeutics to investigate treatment-specific change in immune checkpoint expression, in vitro. Specific changes of immune checkpoint expression were identified on PBL and TIL of HNSCC patients compared to healthy donors. Various chemotherapeutics acted differently on the expression of immune checkpoints. Changes of checkpoint expression were significantly less pronounced on regulatory T cells compared to other lymphocyte populations. Nivolumab treatment significantly reduced the receptor PD-1 on all analyzed T cell populations, in vitro. The specific immune checkpoint expression patterns in HNSCC patients and the investigated effects of immunomodulatory agents may improve the development and efficacy of targeted immunotherapy

    Protein-based oncopanel as addition to target sequencing in head and neck squamous cell carcinoma to individualize treatment decisions

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers and patients have limited therapy options if primary treatment fails. Therefore, additional information about the biology of the tumor is essential. Here we performed a feasibility study of concurrently applying two precision diagnostic tools in a consecutive series of HNSCC patients. We analyzed tumor samples of 31 patients using a genomic (oncomine) and a proteomic, immunohistochemical approach (oncopanel) and compared the result, also in the focus on their overlapping therapeutical targets. We found no strong correlation between the two approaches and observed a higher proportion of marker expression for the immunohistochemical panel. However, both panels show in our HNSCC cohort distinct patterns with druggable targets. The data suggest that both approaches complement one another and can be applied side-by-side to identify the best targets for the development of individual treatment options for HNSCC patients

    Kleinzelliges neuroendokrines Karzinom des Kopf-Hals-Bereichs: eine Übersichtsarbeit und Fallserie

    Get PDF
    Einleitung Kleinzellige neuroendokrine Karzinome (KNK) des Larynx sind eine seltene TumorentitĂ€t mit schlechter Prognose bei einer 5-Jahres-Überlebensrate nach Standardtherapie mit primĂ€rer Radiochemotherapie (pRCT) von 5 %. Methoden Es erfolgte eine systematische Literaturrecherche auf PubMed mit den Suchbegriffen „small cell neuroendocrine carcinoma“ und „head and neck“ sowie die Aufarbeitung von PatientenfĂ€llen aus unserer Klinik. Ergebnisse Die Recherche ergab keine großen randomisierten kontrollierten Studien zur Standardtherapie. Bisherige Therapiestrategien basieren auf den Erfahrungen bei kleinzelligen Karzinomen der Lunge. 0,5 % aller KNK treten im Kopf-Hals-Bereich auf. In unserer Klinik wurden in 12 Jahren 9 KNK diagnostiziert, 2 davon mit laryngealer Manifestation. Wir berichten ĂŒber einen 29-jĂ€hrigen Patienten mit Erstdiagnose (ED) eines Larynx-KNK im FrĂŒhjahr 2018. Im Staging zeigten sich zervikale Lymphknotenmetastasen, eine Fernmetastasierung wurde ausgeschlossen. Es erfolgte eine pRCT mit Cisplatin/Etoposid mit darauffolgender Komplettremission. Im Re-Staging 6 Monate nach ED zeigten sich Metastasen-suspekte Lungenherde. Unter 6 Zyklen palliativer Systemtherapie mit Cyclophosphamid, Adriamycin und Vincristin kam es zu einer partiellen Remission. Nach 12 Monaten erfolgte bei Progress die Therapieumstellung auf den PD-1-Antikörper Nivolumab. Der Patient verstarb 22 Monate nach ED an einer tumorbedingten Massenblutung mit Verlegung der Atemwege. Schlussfolgerung Bisher existieren keine Studienergebnisse ĂŒber den Einsatz von Nivolumab als Third-Line-Therapie bei KNK. Die Analyse einer NTRK-Fusion (neurotrophe Tyrosin-Rezeptor-Kinase) oder einer Folatrezeptor-Expression sollte erwogen werden zur Evaluation einer Tropomyosin-Rezeptor-Kinase-Inhibitor- oder einer Radionuklidtherapie

    Peripheral cytokine levels differ by HPV status and change treatment-dependently in patients with head and neck squamous cell carcinoma

    Get PDF
    Cytokines and immune mediators play an important role in the communication between immune cells guiding their response to infectious diseases or cancer. In this study, a comprehensive longitudinal analysis of serum cytokines and immune mediators in head and neck squamous cell carcinoma (HNSCC) patients was performed. In a prospective, non-interventional, longitudinal study, blood samples from 22 HNSCC patients were taken at defined time points (TP) before, during, and every 3 months after completion of (chemo)radio)therapy (CRT/RT) until 12 months after treatment. Serum concentrations of 17 cytokines/immune mediators and High-Mobility-Group-Protein B1 (HMGB1) were measured by fluorescent bead array and ELISA. Concentrations of sFas were significantly elevated during and after CRT/RT, whereas perforin levels were significantly decreased after CRT/RT. Levels of MIP-1ÎČ and Granzyme B differed significantly during CRT/RT by HPV status. Increased HMGB1 levels were observed at recurrence, accompanied by high levels of IL-4 and IL-10. The sFas increase and simultaneous perforin decrease may indicate an impaired immune cell function during adjuvant radiotherapy. Increased levels of pro-inflammatory cytokines in HPV+ compared to HPV− patients seem to reflect the elevated immunogenicity of HPV-positive tumors. High levels of HMGB1 and anti-inflammatory cytokines at recurrence may be interpreted as a sign of immune evasion

    Prospective longitudinal study of immune checkpoint molecule (ICM) expression in immune cell subsets during curative conventional therapy of head and neck squamous cell carcinoma (HNSCC)

    Get PDF
    Programmed-death-1 (PD1) antibodies are approved for recurrent and metastatic head and neck squamous cell carcinoma. Multiple drugs targeting costimulatory and coinhibitory immune checkpoint molecules (ICM) have been discovered. However, it remains unknown how these ICM are affected by curative conventional therapy on different immune cell subsets during the course of treatment. In the prospective noninterventional clinical study titled “Immune Response Evaluation to Curative conventional Therapy” (NCT03053661), 22 patients were prospectively enrolled. Blood samples were drawn at defined time points throughout curative conventional treatment and follow-up. Immune cells (IC) from the different time points were assessed by multicolor flow cytometry. The following ICM were measured by flow cytometry: PD1, CTLA4, BTLA, CD137, CD27, GITR, OX40, LAG3 and TIM3. Dynamics of ICM expression were assessed using nonparametric paired samples tests. Significant changes were noted for PD1, BTLA and CD27 on multiple IC types during or after radiotherapy. Nonsignificant trends for increased expression of OX40 and GITR from baseline until the end of RT were observed on CD4 T cells and CD4+ CD39+ T cells. In patients with samples at recurrence of disease, a nonsignificant increase of TIM3 and LAG3 positive CD4+ CD39+ T cells was evident, accompanied by an increase of double positive cells for TIM3/LAG3. Potential future targets to be combined with RT in the conventional treatment and anti-PD1/PD-L could be BTLA agonists, or agonistic antibodies to costimulatory ICM like CD137, OX40 or GITR. The combination of cetuximab with CD27 agonistic antibodies enhancing ADCC or the targeting of TIM3/LAG3 may be another promising strategy
    • 

    corecore