31 research outputs found

    Temporally Causal Discovery Tests for Discrete Time Series and Neural Spike Trains

    Full text link
    We consider the problem of detecting causal relationships between discrete time series, in the presence of potential confounders. A hypothesis test is introduced for identifying the temporally causal influence of (xn)(x_n) on (yn)(y_n), causally conditioned on a possibly confounding third time series (zn)(z_n). Under natural Markovian modeling assumptions, it is shown that the null hypothesis, corresponding to the absence of temporally causal influence, is equivalent to the underlying `causal conditional directed information rate' being equal to zero. The plug-in estimator for this functional is identified with the log-likelihood ratio test statistic for the desired test. This statistic is shown to be asymptotically normal under the alternative hypothesis and asymptotically χ2\chi^2 distributed under the null, facilitating the computation of pp-values when used on empirical data. The effectiveness of the resulting hypothesis test is illustrated on simulated data, validating the underlying theory. The test is also employed in the analysis of spike train data recorded from neurons in the V4 and FEF brain regions of behaving animals during a visual attention task. There, the test results are seen to identify interesting and biologically relevant information.Comment: 31 pages, 4 figure

    Monotherapy with pixantrone in histologically confirmed relapsed or refractory aggressive B-cell non-Hodgkin lymphoma: post-hoc analyses from a phase III trial.

    Get PDF
    This post hoc analysis of a phase 3 trial explored the effect of pixantrone in patients (50 pixantrone, 47 comparator) with relapsed or refractory aggressive B-cell non-Hodgkin lymphoma (NHL) confirmed by centralized histological review. Patients received 28-d cycles of 85 mg/m(2) pixantrone dimaleate (equivalent to 50 mg/m(2) in the approved formulation) on days 1, 8 and 15, or comparator. The population was subdivided according to previous rituximab use and whether they received the study treatment as 3rd or 4th line. Median number of cycles was 4 (range, 2-6) with pixantrone and 3 (2-6) with comparator. In 3rd or 4th line, pixantrone was associated with higher complete response (CR) (23·1% vs. 5·1% comparator, P = 0·047) and overall response rate (ORR, 43·6% vs. 12·8%, P = 0·005). In 3rd or 4th line with previous rituximab (20 pixantrone, 18 comparator), pixantrone produced better ORR (45·0% vs. 11·1%, P = 0·033), CR (30·0% vs. 5·6%, P = 0·093) and progression-free survival (median 5·4 vs. 2·8 months, hazard ratio 0·52, 95% confidence interval 0·26-1·04) than the comparator. Similar results were found in patients without previous rituximab. There were no unexpected safety issues. Pixantrone monotherapy is more effective than comparator in relapsed or refractory aggressive B-cell NHL in the 3rd or 4th line setting, independently of previous rituximab

    A portable X-pinch design for x-ray diagnostics of warm dense matter

    Get PDF
    We describe the design and x-ray emission properties (temporal, spatial, and spectral) of Dry Pinch I, a portable X-pinch driver developed at Imperial College London. Dry Pinch I is a direct capacitor discharge device, 300 × 300 × 700 mm3 in size and ∼50 kg in mass, that can be used as an external driver for x-ray diagnostics in high-energy-density physics experiments. Among key findings, the device is shown to reliably produce 1.1 ± 0.3 ns long x-ray bursts that couple ∼50 mJ of energy into photon energies from 1 to 10 keV. The average shot-to-shot jitter of these bursts is found to be 10 ± 4.6 ns using a combination of x-ray and current diagnostics. The spatial extent of the x-ray hot spot from which the radiation emanates agrees with previously published results for X-pinches—suggesting a spot size of 10 ± 6 µm in the soft energy region (1–10 keV) and 190 ± 100 µm in the hard energy region (>10 keV). These characteristics mean that Dry Pinch I is ideally suited for use as a probe in experiments driven in the laboratory or at external facilities when more conventional sources of probing radiation are not available. At the same time, this is also the first detailed investigation of an X-pinch operating reliably at current rise rates of less than 1 kA/ns
    corecore