7 research outputs found
Bone marrow haematopoiesis in patients with COVID-19
AIMS
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection broadly affects organ homeostasis, including the haematopoietic system. Autopsy studies are a crucial tool for investigation of organ-specific pathologies. Here we perform an in-depth analysis of the impact of severe coronavirus disease 2019 (COVID-19) on bone marrow haematopoiesis in correlation with clinical and laboratory parameters.
METHODS AND RESULTS
Twenty-eight autopsy cases and five controls from two academic centres were included in the study. We performed a comprehensive analysis of bone marrow pathology and microenvironment features with clinical and laboratory parameters and assessed SARS-CoV-2 infection of the bone marrow by quantitative polymerase chain reaction (qPCR) analysis. In COVID-19 patients, bone marrow specimens showed a left-shifted myelopoiesis (19 of 28, 64%), increased myeloid-erythroid ratio (eight of 28, 28%), increased megakaryopoiesis (six of 28, 21%) and lymphocytosis (four of 28, 14%). Strikingly, a high proportion of COVID-19 specimens showed erythrophagocytosis (15 of 28, 54%) and the presence of siderophages (11 of 15, 73%) compared to control cases (none of five, 0%). Clinically, erythrophagocytosis correlated with lower haemoglobin levels and was more frequently observed in patients from the second wave. Analysis of the immune environment showed a strong increase in CD68+ macrophages (16 of 28, 57%) and a borderline lymphocytosis (five of 28, 18%). The stromal microenvironment showed oedema (two of 28, 7%) and severe capillary congestion (one of 28, 4%) in isolated cases. No stromal fibrosis or microvascular thrombosis was found. While all cases had confirmed positive testing of SARS-CoV-2 in the respiratory system, SARS-CoV-2 was not detected in the bone marrow by high-sensitivity PCR, suggesting that SARS-CoV-2 does not commonly replicate in the haematopoietic microenvironment.
CONCLUSIONS
SARS-CoV-2 infection indirectly impacts the haematological compartment and the bone marrow immune environment. Erythrophagocytosis is frequent and associated with lower haemoglobin levels in patients with severe COVID-19
Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms
Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver
Recommended from our members
The sympathomimetic agonist mirabegron did not lower JAK2-V617F allele burden, but restored nestin-positive cells and reduced reticulin fibrosis in patients with myeloproliferative neoplasms: results of phase II study SAKK 33/14.
The β-3 sympathomimetic agonist BRL37344 restored nestin-positive cells within the stem cell niche, and thereby normalized blood counts and improved myelofibrosis in a mouse model of JAK2-V617F-positive myeloproliferative neoplasms. We therefore tested the effectiveness of mirabegron, a β-3 sympathomimetic agonist, in a phase II trial including 39 JAK2-V617F-positive patients with myeloproliferative neoplasms and a mutant allele burden more than 20%. Treatment consisted of mirabegron 50 mg daily for 24 weeks. The primary end point was reduction of JAK2-V617F allele burden of 50% or over, but this was not reached in any of the patients. One patient achieved a 25% reduction in JAK2-V617F allele burden by 24 weeks. A small subgroup of patients showed hematologic improvement. As a side study, bone marrow biopsies were evaluated in 20 patients. We found an increase in the nestin+ cells from a median of 1.09 (interquartile range 0.38-3.27)/mm2 to 3.95 (interquartile range 1.98-8.79)/mm2 (P<0.0001) and a slight decrease of reticulin fibrosis from a median grade of 1.0 (interquartile range 0-3) to 0.5 (interquartile range 0-2) (P=0.01) between start and end of mirabegron treatment. Despite the fact that the primary end point of reducing JAK2-V617F allele burden was not reached, the observed effects on nestin+ mesenchymal stem cells and reticulin fibrosis is encouraging, and shows that mirabegron can modify the microenvironment where the JAK2-mutant stem cells are maintained. (Registered at clinicaltrials.gov identifier: 02311569)
Recommended from our members
Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms.
Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver
Recommended from our members
Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms.
Acknowledgements: We thank D. Bonnet, D. Passaro, A. Batsivari, H. Qian, L. Sandhow, R. C. Skoda, C. Nerlov, G. N. Enikolopov for the mouse models; N. Richoz and M. Clatworthy for access to intravital imaging; L. Arranz, C. L. F. de Castillejo, A. Rodríguez-Romera, C. Kapeni, E. Carrillo and other members of the S.M.-F group for assistance and discussions; A. Castillo Venzor, D. Pask, T. Hamilton (University of Cambridge) and the Central Biomedical Services & the Anne McLaren Building staff for support; and the Wellcome Trust-MRC Stem Cell Institute imaging core (D. Clements) and histopathology core (I. Pshenichnaya), the CIMR flow cytometry core (R. Schulte and G. Gondrys-Kotarba) and the Cambridge National Institute for Health and Care Research (NIHR) BRC Cell Phenotyping Hub for technical assistance. Samples were provided by the Cambridge Blood and Stem Cell Biobank, which is supported by the Cambridge NIHR Biomedical Research Centre, Wellcome Trust-Medical Research Council (MRC) Stem Cell Institute and the Cambridge Experimental Cancer Medicine Centre, UK. A.H. gratefully acknowledges the support of the University of Cambridge Herchel Smith Fund through a Herchel Smith Postdoctoral Research Fellowship and the support of Darwin College Cambridge through a Research Fellowship. A.H. and B.D.S. also acknowledge the support of the core funding to the Wellcome/Cancer Research UK Gurdon Institute (nos. 203144/Z/16/Z and C6946/A24843). Work in the A.R.G. laboratory was supported by Wellcome (no. RG74909), WBH Foundation (no. RG91681), Alborada Trust (no. RG109433) and Cancer Research UK (no. RG83389). This work was supported by core support grants from the Wellcome Trust (no. 203151/Z/16/Z) and the MRC to the Cambridge Stem Cell Institute, Marie Skłodowska-Curie Career Action H2020-MSCA-IF-2015-708411 to C.K., National Health Institute Blood and Transplant (UK), Horizon 2020 ERC-2014-CoG-648765, MRC-AMED grant no. MR/V005421/1 and a Programme Foundation Award (no. C61367/A26670) from Cancer Research UK to S.M.-F. This research was funded in whole, or in part, by the Wellcome Trust (no. 203151/Z/16/Z) and the UK Research and Innovation MRC (no. MC_PC_17230). For the purpose of open access, the author has applied a CC BY public copyright license to any author-accepted manuscript version arising from this submission.Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver