12 research outputs found

    The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone

    Get PDF
    The load-transfer pathway in trabecular bone is largely determined by its architecture. However, the influence of variations in mineralization is not known. The goal of this study was to examine the influence of inhomogeneously distributed degrees of mineralization (DMB) on intratrabecular stresses and strains. Cubic mandibular condylar bone specimens from fetal and newborn pigs were used. Finite element models were constructed, in which the element tissue moduli were scaled to the local DMB. Disregarding the observed distribution of mineralization was associated with an overestimation of average equivalent strain and underestimation of von Mises equivalent stress. From the surface of trabecular elements towards their core the strain decreased irrespective of tissue stiffness distribution. This indicates that the trabecular elements were bent during the compression experiment. Inhomogeneously distributed tissue stiffness resulted in a low stress at the surface that increased towards the core. In contrast, disregarding this tissue stiffness distribution resulted in high stress at the surface which decreased towards the core. It was concluded that the increased DMB, together with concurring alterations in architecture, during development leads to a structure which is able to resist increasing loads without an increase in average deformation, which may lead to damage

    Mammalian Feeding Motor Patterns

    No full text

    Biomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle

    No full text
    Abstract The purpose of the present study was to examine the changes in apparent mechanical properties of trabecular bone in the mandibular condyle during fetal development and to investigate the contributions of altering architecture, and degree and distribution of mineralization to this change. Three-dimensional, high-resolution micro-computed tomography (microCT) reconstructions were utilized to assess the altering architecture and mineralization during development. From the reconstructions, inhomogeneous finite element models were constructed, in which the tissue moduli were scaled to the local degree of mineralization of bone (DMB). In addition, homogeneous models were devised to study the separate influence of architectural and DMB changes on apparent mechanical properties. It was found that the bone structure became stiffer with age. Both the mechanical and structural anisotropies pointed to a rod-like structure that was predominantly oriented from anteroinferior to posterosuperior. Resistance against shear, also increasing with age, was highest in the sagittal plane. The reorganization of trabecular elements, which occurred without a change in bone volume fraction, contributed to the increase in apparent stiffness. The increase in DMB, however, contributed more dominantly. Incorporating the observed inhomogeneous distribution of mineralization decreased the apparent stiffness, but increased the mechanical anisotropy. This denotes that there might be a directional dependency of the DMB of trabecular elements, i.e. differently orientated trabecular elements might have different DMBs. In conclusion, the changes in DMB and its distribution are important to consider when studying mechanical properties during development and should be considered in other situations where differences in DMB are expected.

    Ae2(a,b)-Deficient mice exhibit osteopetrosis of long bones but not of calvaria

    No full text
    Extracellular acidification by osteoclasts is essential to bone resorption. During proton pumping, intracellular pH (pH(i)) is thought to be kept at a near-neutral level by chloride/bicarbonate exchange. Here we show that the Na+-independent chloride/bicarbonate anion exchanger 2 (Ae2) is relevant for this process in the osteoclasts from the long bones of Ae2(a,b)(-/-) mice ( deficient in the main isoforms Ae2a, Ae2b(1), and Ae2b(2)). Although the long bones of these mice had normal numbers of multinucleated osteoclasts, these cells lacked a ruffled border and displayed impaired bone resorption activity, resulting in an osteopetrotic phenotype of long bones. Moreover, in vitro osteoclastogenesis assays using long-bone marrow cells from Ae2(a,b)(-/-) mice suggested a role for Ae2 in osteoclast formation, as fusion of preosteoclasts for the generation of active multinucleated osteoclasts was found to be slightly delayed. In contrast to the abnormalities observed in the long bones, the skull of Ae2(a,b)(-/-) mice showed no alterations, indicating that calvaria osteoclasts may display normal resorptive activity. Microfluorimetric analysis of osteoclasts from normal mice showed that, in addition to Ae2 activity, calvaria osteoclasts-but not long-bone osteoclasts-possess a sodium-dependent bicarbonate transporting activity. Possibly, this might compensate for the absence of Ae2 in calvaria osteoclasts of Ae2(a,b)(-/-) mice.-Jansen, I. D. C., Mardones, P., Lecanda, F., de Vries, T. J., Recalde, S., Hoeben, K. A., Schoenmaker, T., Ravesloot, J.-H., van Borren, M. M. G. J., van Eijden, T. M., Bronckers, A. L. J. J., Kellokumpu, S., Medina, J. F., Everts, V., Oude Elferink, R. P. J. Ae2(a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J. 23, 3470-3481 ( 2009). www.fasebj.or
    corecore