40 research outputs found
Neurodevelopment and Endocrine Disruption
In this article I explore the possibility that contaminants contribute to the increasing prevalence of attention deficit hyperactivity disorder, autism, and associated neurodevelopmental and behavioral problems in developed countries. I discuss the exquisite sensitivity of the embryo and fetus to thyroid disturbance and provide evidence of human in utero exposure to contaminants that can interfere with the thyroid. Because it may never be possible to link prenatal exposure to a specific chemical with neurodevelopmental damage in humans, I also present alternate models where associations have been made between exposure to specific chemicals or chemical classes and developmental difficulties in laboratory animals, wildlife, and humans
A Case for Revisiting the Safety of Pesticides: A Closer Look at Neurodevelopment
The quality and quantity of the data about the risk posed to humans by individual pesticides vary considerably. Unlike obvious birth defects, most developmental effects cannot be seen at birth or even later in life. Instead, brain and nervous system disturbances are expressed in terms of how an individual behaves and functions, which can vary considerably from birth through adulthood. In this article I challenge the protective value of current pesticide risk assessment strategies in light of the vast numbers of pesticides on the market and the vast number of possible target tissues and end points that often differ depending upon timing of exposure. Using the insecticide chlorpyrifos as a model, I reinforce the need for a new approach to determine the safety of all pesticide classes. Because of the uncertainty that will continue to exist about the safety of pesticides, it is apparent that a new regulatory approach to protect human health is needed
Good Laboratory Practices: Myers et al. Respond
Reproduced with permission from Environmental Health Perspectives. DOI:10.1289/ehp.0900884RMyers et al. respond to a letter written by Becker et al. regarding Myers' article "Why public health agencies cannot depend on Good Laboratory Practices as a criterion for selecting data: the case of bisphenol A.
Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement
Abstract The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National (Continued on next page