28 research outputs found

    The effect of size and density on the mean retention time of particles in the reticulorumen of cattle (Bos primigenius f. taurus), muskoxen (Ovibos moschatus) and moose (Alces alces)

    Get PDF
    Particle passage from the reticulorumen (RR) depends on particle density and size. Forage particle density and size are related and change over time in the RR. Particle density mainly influences sorting in the reticulum, whereas particle size influences particle retention in the fibre mat of stratified rumen contents (‘filter-bed' effect). We investigated these effects independently, by inserting plastic particles of different sizes (1, 10 and 20mm) and densities (1·03, 1·20 and 1·44mg/ml) in the RR of cattle (Bos primigenius f. taurus) as a pilot study, and of muskoxen (Ovibos moschatus; n 4) and moose (Alces alces; n 2) both fed two diets (browse and grass). Faeces were analysed for plastic residues for 13d after dosing to calculate mean retention times (MRT). The results confirmed previous findings of differences in absolute MRT between species. Comparing muskoxen with moose, there was no difference in the effect of particle density on the MRT between species but particle size had a more pronounced effect on the MRT in muskoxen than in moose. This indicated a stronger ‘filter-bed effect' in muskoxen, in accord with the reports of stratified RR contents in this species v. the absence of RR content stratification in moose. Low-density particles were retained longer in both species fed on grass diets, indicating a contribution of forage type to the ‘filter-bed effect'. The results indicate that retention based on particle size may differ between ruminant species, depending on the presence of a fibre mat in the RR, whereas the density-dependent mechanism of sedimentation in the RR is rather constant across specie

    Melt-spun poly(tetrafluoroethylene) fibers

    No full text
    ISSN:0022-2461ISSN:1573-480

    Melting Kinetics of Nascent Poly(tetrafluoroethylene) Powder

    No full text
    The melting behavior of nascent poly(tetrafluoroethylene) (PTFE) was investigated by way of differential scanning calorimetry (DSC). It is well known that the melting temperature of nascent PTFE is about 344∘ C, but reduces to 327∘ C for once molten material. In this study, the melting temperature of nascent PTFE crystals was found to strongly depend on heating rate, decreasing considerably for slow heating rates. In addition, during isothermal experiments in the temperature range of 327∘C<T<344∘ C, delayed melting of PTFE was observed, with complete melting only occurring after up to several hours. The melting kinetics of nascent PTFE were analyzed by means of the isoconversional methodology, and an apparent activation energy of melting, dependent on the conversion, was determined. The compensation effect was utilized in order to derive the pre-exponential factor of the kinetic model. The numerical reconstruction of the kinetic model was compared with literature models and an Avrami-Erofeev model was identified as best fit of the experimental data. The predictions of the kinetic model were in good agreement with the observed time-dependent melting of nascent PTFE during isothermal and constant heating-rate experiments.ISSN:2073-436

    From Drop-Shape Analysis to Stress-Fitting Elastometry

    No full text
    ISSN:0001-8686ISSN:1873-372

    On Abrasive Wear of Polyethylene

    No full text

    High-Performance Polyethylene Fibers “Al Dente”: Improved Gel-Spinning of Ultrahigh Molecular Weight Polyethylene Using Vegetable Oils

    No full text
    We demonstrate that the major drawbacks of so-called gel spinning and solid-state processing of “virgin”, i.e. never molten or fully dissolved, ultrahigh molecular weight polyethylene (UHMW PE) to produce ultrahigh modulus and ultrahigh strength fibers and films, which are the unfavorably low polymer concentrations in highly flammable solvents typically employed in the former process and low production rates in the latter, can be largely avoided by employing relatively poor—as opposed to good—solvents, including, among others, fatty acids and natural oils omnipresent in, for example, fruits, nuts, and seeds, which have additional major recovery and environmental advantages.ISSN:1520-5835ISSN:0024-929

    Additive Manufacturing of Polyolefins

    No full text
    Polyolefins are semi-crystalline thermoplastic polymers known for their good mechanical properties, low production cost, and chemical resistance. They are amongst the most commonly used plastics, and many polyolefin grades are regarded as engineering polymers. The two main additive manufacturing techniques that can be used to fabricate 3D-printed parts are fused filament fabrication and selective laser sintering. Polyolefins, like polypropylene and polyethylene, can, in principle, be processed with both these techniques. However, the semi-crystalline nature of polyolefins adds complexity to the use of additive manufacturing methods compared to amorphous polymers. First, the crystallization process results in severe shrinkage upon cooling, while the processing temperature and cooling rate affect the mechanical properties and mesoscopic structure of the fabricated parts. In addition, for ultra-high-molecular weight polyolefins, limited chain diffusion is a major obstacle to achieving proper adhesion between adjunct layers. Finally, polyolefins are typically apolar polymers, which reduces the adhesion of the 3D-printed part to the substrate. Notwithstanding these difficulties, it is clear that the successful processing of polyolefins via additive manufacturing techniques would enable the fabrication of high-end engineering products with enormous design flexibility. In addition, additive manufacturing could be utilized for the increased recycling of plastics. This manuscript reviews the work that has been conducted in developing experimental protocols for the additive manufacturing of polyolefins, presenting a comparison between the different approaches with a focus on the use of polyethylene and polypropylene grades. This review is concluded with an outlook for future research to overcome the current challenges that impede the addition of polyolefins to the standard palette of materials processed through additive manufacturing

    Additive Manufacturing of Polyolefins

    No full text
    Polyolefins are semi-crystalline thermoplastic polymers known for their good mechanical properties, low production cost, and chemical resistance. They are amongst the most commonly used plastics, and many polyolefin grades are regarded as engineering polymers. The two main additive manufacturing techniques that can be used to fabricate 3D-printed parts are fused filament fabrication and selective laser sintering. Polyolefins, like polypropylene and polyethylene, can, in principle, be processed with both these techniques. However, the semi-crystalline nature of polyolefins adds complexity to the use of additive manufacturing methods compared to amorphous polymers. First, the crystallization process results in severe shrinkage upon cooling, while the processing temperature and cooling rate affect the mechanical properties and mesoscopic structure of the fabricated parts. In addition, for ultra-high-molecular weight polyolefins, limited chain diffusion is a major obstacle to achieving proper adhesion between adjunct layers. Finally, polyolefins are typically apolar polymers, which reduces the adhesion of the 3D-printed part to the substrate. Notwithstanding these difficulties, it is clear that the successful processing of polyolefins via additive manufacturing techniques would enable the fabrication of high-end engineering products with enormous design flexibility. In addition, additive manufacturing could be utilized for the increased recycling of plastics. This manuscript reviews the work that has been conducted in developing experimental protocols for the additive manufacturing of polyolefins, presenting a comparison between the different approaches with a focus on the use of polyethylene and polypropylene grades. This review is concluded with an outlook for future research to overcome the current challenges that impede the addition of polyolefins to the standard palette of materials processed through additive manufacturing.ISSN:2073-436
    corecore