7 research outputs found

    Characterizing the performance of transversely confined multi-culm bamboo to steel connections

    No full text
    The present research experimentally examines the axial behavior of transversely confined multi-culm bamboo to steel connections, using Kao Jue (Bambusa pervariabilis) bamboo species. The study characterizes under axial monotonic loading, the performance in terms of strength, ductility and failure modes. It then evaluates changes in performance under axial quasi-static reversed cyclic loading. Findings reveal that transverse confinement (through hose-clamps) is highly effective in preventing longitudinal splitting of bamboo culms. The connections exhibit large plastic deformations with sufficient strength and ductility. When compared to the monotonic response, early bolt-fracture hinders the cyclic performance. The connections nevertheless comply with the philosophy of capacity-based design — the ductile components (i.e. the bolts) fail before the brittle components (i.e. the culms). Notably, the adopted European Yield Model can analytically estimate the experimental yield loads with good accuracy. This ultimately indicates a path towards a more rational and engineered design of bamboo structures

    Characterizing the performance of transversely confined multi-culm bamboo to steel connections

    No full text
    The present research experimentally examines the axial behavior of transversely confined multi-culm bamboo to steel connections, using Kao Jue (Bambusa pervariabilis) bamboo species. The study characterizes under axial monotonic loading, the performance in terms of strength, ductility and failure modes. It then evaluates changes in performance under axial quasi-static reversed cyclic loading. Findings reveal that transverse confinement (through hose-clamps) is highly effective in preventing longitudinal splitting of bamboo culms. The connections exhibit large plastic deformations with sufficient strength and ductility. When compared to the monotonic response, early bolt-fracture hinders the cyclic performance. The connections nevertheless comply with the philosophy of capacity-based design — the ductile components (i.e. the bolts) fail before the brittle components (i.e. the culms). Notably, the adopted European Yield Model can analytically estimate the experimental yield loads with good accuracy. This ultimately indicates a path towards a more rational and engineered design of bamboo structures

    Application of short-time stochastic subspace identification to estimate bridge frequencies from a traversing vehicle

    No full text
    © 2020 Elsevier Ltd This study establishes a short-time stochastic subspace identification (ST-SSI) framework to estimate bridge frequencies by processing the dynamic response of a traversing vehicle. The formulation uses a dimensionless description of the response that simplifies the vehicle-bridge interaction (VBI) problem and brings forward the minimum number of parameters required for the identification. With the aid of the dimensionless parameters the analysis manages to successfully apply ST-SSI despite the time-varying nature of the VBI system. Further, the proposed approach eliminates the adverse effect of the road surface roughness using a transformed residual vehicle response obtained from two traverses of a vehicle at different speeds over the bridge. The study verifies the proposed ST-SSI approach numerically: it first performs the dynamic VBI simulations to obtain the response of the vehicle, and then applies the proposed ST-SSI method, assuming the dynamic characteristics of the vehicle are available. The numerical experiments concern both a sprung mass model and a more realistic multi-degree-of-freedom (MDOF) vehicle model traversing a simply supported bridge. The results show that the proposed approach succeeds in identifying the first two bridge frequencies for test-vehicle speeds much higher (e.g., 10 m/s = 36 km/h and 20 m/s = 72 km/h) than previously considered, even in the presence of high levels of road surface roughness
    corecore