4 research outputs found

    Smart Unit Care for Pre Fall Detection and Prevention

    Get PDF
    Generally falls may occur from moving or resting postures. This may include slipping from bed and fall from a sitting, or from running or walking. The pre-fall is a non-equilibrium state of human position that may lead to serious injuries, and may negatively impact the quality life condition, particularly for elders. Physical disabilities resulting from the fall incidences may lead to high costs involved with the healing process. In this work, an embedded sensor system using Arduino micro-controller was utilized to coordinate the data received from accelerometer and gyroscope. For a given threshold voltage and fall pattern, the fall decision is made by the microcontroller, citing an incoming fall. The study addresses the number of sensors to be coordinated for enhancing probability of receiving a real fall. Sensors are suggested to be placed on the human body within a belt, and safety devices at human body as well as incorporated in a smart room will be coordinated with the processor commands. Near 150 ms time frame was detected from the simulation results, suggesting a safety device to be triggered and activated for protection within this time frame. This paper discusses the research parameters such as response time for the device activation and interfacing the microcontroller to airbag switch, and means of activating the safety devices within the sharp edges in the smart unit care to minimize the impact of the fall injuries

    Electromagnetic and Thermal Simulations of Human Neurons for SAR Applications

    Get PDF
    The impact of the electromagnetic waves (EM) on human neurons (HN) has been under investigation for decades, in efforts to understand the impact of cell phones (radiation) on human health, or radiation absorption by HN for medical diagnosis and treatment. Research issues including the wave frequency, power intensity, reflections and scattering, and penetration depths are of important considerations to be incorporated into the research study. In this study, computer simulation for the EM exposure to HN was studied for the purpose of determining the upper limits of the electric and magnetic field intensities, power consumption, reflections and transmissions, and the change in temperature resulting from the power absorption by human neurons. Both high frequency structural simulators (HFSS) from ANSYS software, and COMSOL multi-physics were used for the simulation of the EM transmissions and reflections, and the temperature profile within the cells, respectively. For the temperature profile estimation, the study considers an electrical source of 0.5 watt input power, 64 MHz. The EM simulation was looking into the uniformity of the fields within the sample cells. The size of the waveguide was set to be appropriate for a small animal model to be conducted in the future. The incident power was fully transmitted throughout the waveguide, and less than 1% reflections were observed from the simulation. The minimum reflected power near the sample under investigation was found to be with negligible reflected field strengths. The temperature profile resulting from the COMSOL simulation was found to be near 0.25 m°K, indicating no change in temperature on the neuro cells under the EM exposure. The paper details the simulation results for the EM response determined by HFSS, and temperature profile simulated by COMSOL

    Non-invasive photo acoustic approach for human bone diagnosis

    No full text
    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 105 W/m2 power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood)., The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via IR sensors, and acoustic wave signals may be detected via sensitive pressure transducer, which is reserved for future realization

    Dynamic thermal/acoustic response for human bone materials at different energy levels: A diagnosis approach

    No full text
    Background The non-invasive diagnostic approaches have gained high attention in recent years, utilizing high technology sensor systems, including infrared, microwave devices, acoustic transducers, etc. The patient safety, high resolution images, and reliability are among the driving forces toward high technology approaches. The thermal and acoustic responses of the materials may reflect the important research parameters such as penetration depth, power consumption, and temperature change used for the practical models of the system. This paper emphasizes the approach for orthopedic application where the bone densities were considered in simulation to designate the type of human bones. Methods Thermal energy pulses were applied in order to study the penetration depth, the maximum temperature change; spatially and dynamically, and the acoustic pressure distribution over the bone thickness. The study was performed to optimize the amount of energy introduced into the materials that generate the temperature value for high resolution beyond the noise level. Results Three different energy pulses were used; 1 J, 3 J and 5 J. The thermal energy applied to the four bone materials, cancellous bone, cortical bone, red bone marrow, and yellow bone marrow were producing relative changes in temperature. The maximum change ranges from 0.5 K to 2 K for the applied pulses. The acoustic pressure also ranges from 210 to 220 dB among the various types of bones. Conclusion The results obtained from simulation suggest that a practical model utilizing infra-red scanning probe and piezoelectric devices may serve for the orthopedic diagnostic approach. The simulations for multiple layers such as skin interfaced with bone will be reserved for future considerations
    corecore