1,793 research outputs found

    Quasi-stationary states and the range of pair interactions

    Full text link
    "Quasi-stationary" states are approximately time-independent out of equilibrium states which have been observed in a variety of systems of particles interacting by long-range interactions. We investigate here the conditions of their occurrence for a generic pair interaction V(r \rightarrow \infty) \sim 1/r^a with a > 0, in d>1 dimensions. We generalize analytic calculations known for gravity in d=3 to determine the scaling parametric dependences of their relaxation rates due to two body collisions, and report extensive numerical simulations testing their validity. Our results lead to the conclusion that, for a < d-1, the existence of quasi-stationary states is ensured by the large distance behavior of the interaction alone, while for a > d-1 it is conditioned on the short distance properties of the interaction, requiring the presence of a sufficiently large soft-core in the interaction potential.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev. Let

    Hypermultiplets and Topological Strings

    Full text link
    The c-map relates classical hypermultiplet moduli spaces in compactifications of type II strings on a Calabi-Yau threefold to vector multiplet moduli spaces via a further compactification on a circle. We give an off-shell description of the c-map in N=2 superspace. The superspace Lagrangian for the hypermultiplets is a single function directly related to the prepotential of special geometry, and can therefore be computed using topological string theory. Similarly, a class of higher derivative terms for hypermultiplets can be computed from the higher genus topological string amplitudes. Our results provide a framework for studying quantum corrections to the hypermultiplet moduli space, as well as for understanding the black hole wave-function as a function of the hypermultiplet moduli.Comment: 21 pages, references adde

    Instantons in the Double-Tensor Multiplet

    Get PDF
    The double-tensor multiplet naturally appears in type IIB superstring compactifications on Calabi-Yau threefolds, and is dual to the universal hypermultiplet. We revisit the calculation of instanton corrections to the low-energy effective action, in the supergravity approximation. We derive a Bogomolny'i bound for the double-tensor multiplet and find new instanton solutions saturating the bound. They are characterized by the topological charges and the asymptotic values of the scalar fields in the double-tensor multiplet.Comment: 17 pages, LaTeX2e with amsmath.sty; v2: minor change

    N=2 Supergravity Lagrangian Coupled to Tensor Multiplets with Electric and Magnetic Fluxes

    Full text link
    We derive the full N=2 supergravity Lagrangian which contains a symplectic invariant scalar potential in terms of electric and magnetic charges. As shown in reference [1], the appearance of magnetic charges is allowed only if tensor multiplets are present and a suitable Fayet-Iliopoulos term is included in the fermion transformation laws. We generalize the procedure in the quoted reference by adding further a Fayet-Iliopoulos term which allows the introduction of electric charges in such a way that the potential and the equations of motion of the theory are symplectic invariant. The theory is further generalized to include an ordinary electric gauging and the form of the resulting scalar potential is given.Comment: 1+34 pages LaTeX, correction of a typo in the ungauged scalar potentia

    Wasserstein Distortion: Unifying Fidelity and Realism

    Full text link
    We introduce a distortion measure for images, Wasserstein distortion, that simultaneously generalizes pixel-level fidelity on the one hand and realism or perceptual quality on the other. We show how Wasserstein distortion reduces to a pure fidelity constraint or a pure realism constraint under different parameter choices and discuss its metric properties. Pairs of images that are close under Wasserstein distortion illustrate its utility. In particular, we generate random textures that have high fidelity to a reference texture in one location of the image and smoothly transition to an independent realization of the texture as one moves away from this point. Wasserstein distortion attempts to generalize and unify prior work on texture generation, image realism and distortion, and models of the early human visual system, in the form of an optimizable metric in the mathematical sense

    Supergravity description of spacetime instantons

    Get PDF
    We present and discuss BPS instanton solutions that appear in type II string theory compactifications on Calabi-Yau threefolds. From an effective action point of view these arise as finite action solutions of the Euclidean equations of motion in four-dimensional N=2 supergravity coupled to tensor multiplets. As a solution generating technique we make use of the c-map, which produces instanton solutions from either Euclidean black holes or from Taub-NUT like geometries.Comment: 35 pages, some clarifications adde

    N=2 Supersymmetric Scalar-Tensor Couplings

    Full text link
    We determine the general coupling of a system of scalars and antisymmetric tensors, with at most two derivatives and undeformed gauge transformations, for both rigid and local N=2 supersymmetry in four-dimensional spacetime. Our results cover interactions of hyper, tensor and double-tensor multiplets and apply among others to Calabi-Yau threefold compactifications of Type II supergravities. As an example, we give the complete Lagrangian and supersymmetry transformation rules of the double-tensor multiplet dual to the universal hypermultiplet.Comment: 23 pages, LaTeX2e with amsmath.sty; v2: corrected typos and added referenc

    Off-shell N=2 tensor supermultiplets

    Get PDF
    A multiplet calculus is presented for an arbitrary number n of N=2 tensor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In the superconformal case the target spaces parametrized by the scalar fields are cones over (3n-1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject to certain constraints. The coupling to conformal supergravity enables the derivation of a large class of supergravity Lagrangians with vector and tensor multiplets and hypermultiplets. Dualizing the tensor fields into scalars leads to hypermultiplets with hyperkahler or quaternion-Kahler target spaces with at least n abelian isometries. It is demonstrated how to use the calculus for the construction of Lagrangians containing higher-derivative couplings of tensor multiplets. For the application of the c-map between vector and tensor supermultiplets to Lagrangians with higher-order derivatives, an off-shell version of this map is proposed. Various other implications of the results are discussed. As an example an elegant derivation of the classification of 4-dimensional quaternion-Kahler manifolds with two commuting isometries is given.Comment: 36 page
    • …
    corecore