65 research outputs found

    Justification of the Cauchy-Born approximation of elastodynamics

    Get PDF
    We present sharp convergence results for the Cauchy-Born approximation of general classical atomistic interactions, for static problems with small data and for dynamic problems on a macroscopic time interval

    Surface energy and boundary layers for a chain of atoms at low temperature

    Get PDF
    We analyze the surface energy and boundary layers for a chain of atoms at low temperature for an interaction potential of Lennard-Jones type. The pressure (stress) is assumed small but positive and bounded away from zero, while the temperature β−1\beta^{-1} goes to zero. Our main results are: (1) As β→∞\beta \to \infty at fixed positive pressure p>0p>0, the Gibbs measures μβ\mu_\beta and νβ\nu_\beta for infinite chains and semi-infinite chains satisfy path large deviations principles. The rate functions are bulk and surface energy functionals E‾bulk\overline{\mathcal{E}}_{\mathrm{bulk}} and E‾surf\overline{\mathcal{E}}_\mathrm{surf}. The minimizer of the surface functional corresponds to zero temperature boundary layers. (2) The surface correction to the Gibbs free energy converges to the zero temperature surface energy, characterized with the help of the minimum of E‾surf\overline{\mathcal{E}}_\mathrm{surf}. (3) The bulk Gibbs measure and Gibbs free energy can be approximated by their Gaussian counterparts. (4) Bounds on the decay of correlations are provided, some of them uniform in β\beta

    Convergence of the kk-Means Minimization Problem using Γ\Gamma-Convergence

    Full text link
    The kk-means method is an iterative clustering algorithm which associates each observation with one of kk clusters. It traditionally employs cluster centers in the same space as the observed data. By relaxing this requirement, it is possible to apply the kk-means method to infinite dimensional problems, for example multiple target tracking and smoothing problems in the presence of unknown data association. Via a Γ\Gamma-convergence argument, the associated optimization problem is shown to converge in the sense that both the kk-means minimum and minimizers converge in the large data limit to quantities which depend upon the observed data only through its distribution. The theory is supplemented with two examples to demonstrate the range of problems now accessible by the kk-means method. The first example combines a non-parametric smoothing problem with unknown data association. The second addresses tracking using sparse data from a network of passive sensors

    Lattice dynamics on large time scales and dispersive effective equations

    Get PDF
    We investigate the long time behavior of waves in crystals. Starting from a linear wave equation on a discrete lattice with periodicity ε>0\varepsilon>0, we derive the continuum limit equation for time scales of order ε−2\varepsilon^{-2}. The effective equation is a weakly dispersive wave equation of fourth order. Initial values with bounded support result in ring-like solutions, and we characterize the dispersive long time behavior of the radial profiles with a linearized KdV equation of third order

    Young-Maß-Lösungen für nichtlineare partielle Differentialgleichungen

    Get PDF
    [no abstract

    Distribution of cracks in a chain of atoms at low temperature

    Get PDF
    We consider a one-dimensional classical many-body system with interaction potential of Lennard--Jones type in the thermodynamic limit at low temperature 1/β ∈ (0, ∞). The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of N exp(-β e surf /2) with e surf > 0 a surface energy
    • …
    corecore