8 research outputs found

    Clinical and laboratory considerations: determining an antibody-based composite correlate of risk for reinfection with SARS-CoV-2 or severe COVID-19

    Get PDF
    Much of the global population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus (natural infection), vaccination, or a combination of both (hybrid immunity). Key questions that subsequently arise relate to the duration and the level of protection an individual might expect based on their infection and vaccination history. A multi-component composite correlate of risk (CoR) could inform individuals and stakeholders about protection and aid decision making. This perspective evaluates the various elements that need to be accommodated in the development of an antibody-based composite CoR for reinfection with SARS-CoV-2 or development of severe COVID-19, including variation in exposure dose, transmission route, viral genetic variation, patient factors, and vaccination status. We provide an overview of antibody dynamics to aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss anti-SARS-CoV-2 immunoassays, sample matrices, testing formats, frequency of sampling and the optimal time point for such sampling. While the development of a composite CoR is challenging, we provide our recommendations for each of these key areas and highlight areas that require further work to be undertaken

    Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    Get PDF
    The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing

    Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker

    Get PDF
    The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. Fro

    Detection of neutralizing antibodies against multiple SARS-CoV-2 strains in dried blood spots using cell-free PCR

    No full text
    Neutralizing antibodies are critical for conferring immunity against SARS-CoV-2. Here, Dahn et al. report a PCR assay termed SONIA (Split-Oligonucleotide Neighboring Inhibition Assay) for measuring neutralizing antibodies against multiple SARS-CoV-2 strains in fingerprick dried blood spot samples

    Petal Integration for the CMS Tracker End Caps

    No full text
    This note describes the assembly and testing of the 292 petals built for the CMS Tracker End Caps from the beginning of 2005 until the summer of 2006. Due to the large number of petals to be assembled and the need to reach a throughput of 10 to 15 petals per week, a distributed integration approach was chosen. This integration was carried out by the following institutes: I. and III. Physikalisches Institut - RWTH Aachen University; IIHE, ULB \& VUB Universities, Brussels; Hamburg University; IEKP, Karlsruhe University; FYNU, Louvain University; IPN, Lyon University; and IPHC, Strasbourg University. Despite the large number of petals which needed to be reworked to cope with a late-discovered module issue, the quality of the petals is excellent with less than 0.2\% bad channels

    The State-of-the-Art Mycology Laboratory: Visions of the Future

    No full text
    corecore