22 research outputs found
Efficacy of Major Plant Extracts/Molecules on Field Insect Pests
Insect pests are considered the major hurdle in enhancing the production and productivity of any farming system. The use of conventional synthetic pesticides has led to the emergence of pesticide-resistant insects, environmental pollution, and negative effects on natural enemies, which have caused an ecological imbalance of the predator-prey ratio and human health hazards; therefore, eco-friendly alternative strategies are required. The plant kingdom, a rich repertoire of secondary metabolites, can be tapped as an alternative for insect pest management strategies. A number of plants have been documented to have insecticidal properties against various orders of insects in vitro by acting as antifeedants, repellents, sterilant and oviposition deterrents, etc. However, only a few plant compounds are applicable at the field level or presently commercialised. Here, we have provided an overview of the broad-spectrum insecticidal activity of plant compounds from neem, Annona, Pongamia, and Jatropha. Additionally, the impact of medicinal plants, herbs, spices, and essential oils has been reviewed briefl
Apoptosis-Mediated Cytotoxicity of Prodigiosin-Like Red Pigment Produced by γ-Proteobacterium and Its Multiple Bioactivities
Recently we discovered a bacterial strain (MS-02-063) that produces large amounts of red pigment (PG-L-1). Among the cell lines tested, U937 cells showed the highest susceptibility to PG-L-1 toxicity. PG-L-1 induced typical apoptotic nuclear morphological changes, and single cell gel electrophoresis revealed that PG-L-1 caused DNA fragmentation in U937 cells. In PG-L-1 treated U937 cells, the acidic compartment such as lysosomes disappeared, suggesting that PG-L-1-induced disorder of intracellular pH compartmentalization might trigger apoptotic signal. Since p38 MAP kinase inhibitor specifically prevented the PG-L-1 mediated cell death, p38 MAP kinase may be involved in the cytotoxic mechanism. In fact, immunoblot analysis of p38 MAP kinase revealed that phosphorylation of p38 MAP kinase occurred in PG-L-1-treated U937 cells. In addition to the activity to induce apoptotic cell death as reported in several PG family members, our chemiluminescence analysis suggested that PG-L-1 inhibited superoxide generation by 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated U937 cells in a dose-dependent manner. Since PG-L-1 had no effect on the chemiluminescence response caused by xanthine oxidase/hypoxanthine system, PG-L-1 acts on the enzyme system responsible for O_2- generation rather than direct scavenging toward O_2-. Our results suggest that PG-L-1 causes multiple biochemical effects on the target cells such as increase in pH in acidic intracellular compartment, activation of p38 MAP kinase, inhibition of O_2- generation, and eventually induces apoptotic cell death