13 research outputs found

    Status and perspectives of short baseline studies

    Full text link
    The study of flavor changing neutrinos is a very active field of research. I will discuss the status of ongoing and near term experiments investigating neutrino properties at short distances from the source. In the next few years, the Double Chooz, RENO and Daya Bay reactor neutrino experiments will start looking for signatures of a non-zero value of the mixing angle θ13\theta_{13} with much improved sensitivities. The MiniBooNE experiment is investigating the LSND anomaly by looking at both the νμνe\nu_{\mu} \to \nu_{e} and νˉμνˉe\bar{\nu}_{\mu} \to \bar{\nu}_{e} appearance channels. Recent results on cross section measurements will be discussed briefly.Comment: 6 pages, 2 figures, to appear in the proceedings of the 11th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2009), Rome, Italy, 1-5 July 200

    Constraints on non-thermal Dark Matter from Planck lensing extraction

    Full text link
    Distortions of CMB temperature and polarization anisotropy maps caused by gravitational lensing, observable with high angular resolution and sensitivity, can be used to constrain the sterile neutrino mass, offering several advantages against the analysis based on the combination of CMB, LSS and Ly\alpha forest power spectra. As the gravitational lensing effect depends on the matter distribution, no assumption on light-to-mass bias is required. In addition, unlike the galaxy clustering and Ly\alpha forest power spectra, the projected gravitational potential power spectrum probes a larger range of angular scales, the non-linear corrections being required only at very small scales. Taking into account the changes in the time-temperature relation of the primordial plasma and the modification of the neutrino thermal potential, we compute the projected gravitational potential power spectrum and its correlation with the temperature in the presence of DM sterile neutrino. We show that the cosmological parameters are generally not biased when DM sterile neutrino is included. From this analysis we found a lower limit on DM sterile neutrino mass m_s >2.08 keV at 95% CL, consistent with the lower mass limit obtained from the combined analysis of CMB, SDSS 3D power spectrum and SDSS Ly\alpha forest power spectrum (mνs>1.7m_{\nu_s}>1.7 keV). We conclude that although the information that can be obtained from lensing extraction is rather limited due to the high level of the lensing noise of Planck experiment, weak lensing of CMB offers a valuable alternative to constrain the dark matter sterile neutrino mass.Comment: 15 pages, 6 figure

    Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect

    Get PDF
    We study several aspects of the kinetic approach to sterile neutrino production via active-sterile mixing. We obtain the neutrino propagator in the medium including self-energy corrections up to O(GF2)\mathcal{O}(G^2_F), from which we extract the dispersion relations and damping rates of the propagating modes. The dispersion relations are the usual ones in terms of the index of refraction in the medium, and the damping rates are Γ1(k)=Γaa(k)cos2θm(k);Γ2(k)=Γaa(k)sin2θm(k)\Gamma_1(k) = \Gamma_{aa}(k) \cos^2\theta_m(k); \Gamma_2(k) = \Gamma_{aa}(k) \sin^2\theta_m(k) where Γaa(k)GF2kT4\Gamma_{aa}(k)\propto G^2_F k T^4 is the active neutrino scattering rate and θm(k)\theta_m(k) is the mixing angle in the medium. We provide a generalization of the transition probability in the \emph{medium from expectation values in the density matrix}: Pas(t)=sin22θm4[eΓ1t+eΓ2t2e1/2(Γ1+Γ2)tcos(ΔEt)] P_{a\to s}(t) = \frac{\sin^22\theta_m}{4}[e^{-\Gamma_1t} + e^{-\Gamma_2 t}-2e^{-{1/2}(\Gamma_1+\Gamma_2)t} \cos\big(\Delta E t\big)] and study the conditions for its quantum Zeno suppression directly in real time. We find the general conditions for quantum Zeno suppression, which for mskeVm_s\sim \textrm{keV} sterile neutrinos with sin2θ103\sin2\theta \lesssim 10^{-3} \emph{may only be} fulfilled near an MSW resonance. We discuss the implications for sterile neutrino production and argue that in the early Universe the wide separation of relaxation scales far away from MSW resonances suggests the breakdown of the current kinetic approach.Comment: version to appear in JHE
    corecore