6 research outputs found

    Gamma Rays from Fast Black-hole Winds

    No full text
    Massive black holes at the centers of galaxies can launch powerful wide-angle winds that, if sustained over time, can unbind the gas from the stellar bulges of galaxies. These winds may be responsible for the observed scaling relation between the masses of the central black holes and the velocity dispersion of stars in galactic bulges. Propagating through the galaxy, the wind should interact with the interstellar medium creating a strong shock, similar to those observed in supernovae explosions, which is able to accelerate charged particles to high energies. In this work we use data from the Fermi Large Area Telescope to search for the γ-ray emission from galaxies with an ultrafast outflow (UFO): a fast (v ~ 0.1 c), highly ionized outflow, detected in absorption at hard X-rays in several nearby active galactic nuclei (AGN). Adopting a sensitive stacking analysis we are able to detect the average γ-ray emission from these galaxies and exclude that it is due to processes other than UFOs. Moreover, our analysis shows that the γ-ray luminosity scales with the AGN bolometric luminosity and that these outflows transfer ~0.04% of their mechanical power to γ-rays. Interpreting the observed γ-ray emission as produced by cosmic rays (CRs) accelerated at the shock front, we find that the γ-ray emission may attest to the onset of the wind-host interaction and that these outflows can energize charged particles up to the transition region between galactic and extragalactic CRs

    Fermi-LAT Observations of LIGO/Virgo Event GW170817

    No full text
    We present the Fermi Large Area Telescope (LAT) observations of the binary neutron star merger event GW170817 and the associated short gamma-ray burst (SGRB) GRB 170817A detected by the Fermi Gamma-ray Burst Monitor. The LAT was entering the South Atlantic Anomaly at the time of the LIGO/Virgo trigger (t GW) and therefore cannot place constraints on the existence of high-energy (E > 100 MeV) emission associated with the moment of binary coalescence. We focus instead on constraining high-energy emission on longer timescales. No candidate electromagnetic counterpart was detected by the LAT on timescales of minutes, hours, or days after the LIGO/Virgo detection. The resulting flux upper bound (at 95% C.L.) from the LAT is 4.5 × 10-10 erg cm-2 s-1 in the 0.1-1 GeV range covering a period from t GW + 1153 s to t GW + 2027 s. At the distance of GRB 170817A, this flux upper bound corresponds to a luminosity upper bound of 9.7 × 1043 erg s-1, which is five orders of magnitude less luminous than the only other LAT SGRB with known redshift, GRB 090510. We also discuss the prospects for LAT detection of electromagnetic counterparts to future gravitational-wave events from Advanced LIGO/Virgo in the context of GW170817/GRB 170817A

    Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope

    No full text
    Black holes with masses below approximately 1015 g are expected to emit gamma-rays with energies above a few tens of MeV, which can be detected by the Fermi Large Area Telescope (LAT). Although black holes with these masses cannot be formed as a result of stellar evolution, they may have formed in the early universe and are therefore called primordial black holes (PBHs). Previous searches for PBHs have focused on either short-timescale bursts or the contribution of PBHs to the isotropic gamma-ray emission. We show that, in cases of individual PBHs, the Fermi-LAT is most sensitive to PBHs with temperatures above approximately 16 GeV and masses 6 × 1011 g, which it can detect out to a distance of about 0.03 pc. These PBHs have a remaining lifetime of months to years at the start of the Fermi mission. They would appear as potentially moving point sources with gamma-ray emission that become spectrally harder and brighter with time until the PBH completely evaporates. In this paper, we develop a new algorithm to detect the proper motion of gamma-ray point sources, and apply it to 318 unassociated point sources at a high galactic latitude in the third Fermi-LAT source catalog. None of the unassociated point sources with spectra consistent with PBH evaporation show significant proper motion. Using the nondetection of PBH candidates, we derive a 99% confidence limit on the PBH evaporation rate in the vicinity of Earth, {\dot{ρ }}PBH}< 7.2× {10}3 {pc}}-3 {yr}}-1. This limit is similar to the limits obtained with ground-based gamma-ray observatories

    Unveiling the complex correlation patterns in Mrk 421

    No full text
    The blazar Mrk421 (redshift z=0.031) is one of the brightest and closest BL Lac type objects, making it an ideal target to probe blazar physics. We report on an extensive multi-wavelength observing campaign in 2017, during which the intra-band correlation patterns show some disparity and complex behaviours. Observations from several instruments are used to achieve an optimal temporal coverage from radio to TeV energies. In particular, four multi-hour NuSTAR observations organised simultaneously with MAGIC allow to obtain a precise measurement of the falling segments of the two spectral components. A detailed investigation of the very-high-energy (VHE; >100 GeV) versus X-ray flux correlation is performed, by binning the data into several sub-energy bands. A positively correlated variability is observed, but the correlation characteristics change substantially across the various bands probed. Furthermore, during the simultaneous MAGIC and NuSTAR observations a clear change of the Compton dominance is detected without a simultaneous change in the synchrotron regime, indicating "orphan gamma-ray activity". We also investigate an intriguing bright flare at VHE without a substantial flux increase in the X-rays. Within a leptonic scenario, this behaviour is best explained by the appearance of a second population of highly-energetic electrons spanning a narrow range of energies. Finally, our multi-wavelength correlation study also reveals an anti-correlation between the UV/optical and X-ray bands at a significance level above 3 sigma
    corecore