1 research outputs found

    Influence of the Quantum Capacitance on Electrolyte Conductivity through Carbon Nanotubes

    No full text
    In recent experiments, unprecedentedly large values for the conductivity of electrolytes through carbon nanotubes (CNTs) have been measured, possibly owing to flow slip and a high pore surface charge density whose origin remains debated. Here, we model the coupling between the CNT quantum capacitance and the classical electrolyte-filled pore one and study how electrolyte transport is modulated when a gate voltage is applied to the CNT. Our work shows that under certain conditions the quantum capacitance is lower than the pore one due to the finite quasi-1D CNT electronic density of states and therefore controls the CNT surface charge density that dictates the confined electrolyte conductivity. The dependence of the computed surface charge and conductivity on reservoir salt concentration and gate voltage is thus intimately related to the electronic properties of the CNT. This approach provides key insight into why metallic CNTs have larger experimentally measured conductivities than semiconducting ones
    corecore