22 research outputs found

    SARS-CoV-2 Vaccine Responses in Individuals with Antibody Deficiency: Findings from the COV-AD Study

    Get PDF
    BACKGROUND: Vaccination prevents severe morbidity and mortality from COVID-19 in the general population. The immunogenicity and efficacy of SARS-CoV-2 vaccines in patients with antibody deficiency is poorly understood. OBJECTIVES: COVID-19 in patients with antibody deficiency (COV-AD) is a multi-site UK study that aims to determine the immune response to SARS-CoV-2 infection and vaccination in patients with primary or secondary antibody deficiency, a population that suffers from severe and recurrent infection and does not respond well to vaccination. METHODS: Individuals on immunoglobulin replacement therapy or with an IgG less than 4 g/L receiving antibiotic prophylaxis were recruited from April 2021. Serological and cellular responses were determined using ELISA, live-virus neutralisation and interferon gamma release assays. SARS-CoV-2 infection and clearance were determined by PCR from serial nasopharyngeal swabs. RESULTS: A total of 5.6% (n = 320) of the cohort reported prior SARS-CoV-2 infection, but only 0.3% remained PCR positive on study entry. Seropositivity, following two doses of SARS-CoV-2 vaccination, was 54.8% (n = 168) compared with 100% of healthy controls (n = 205). The magnitude of the antibody response and its neutralising capacity were both significantly reduced compared to controls. Participants vaccinated with the Pfizer/BioNTech vaccine were more likely to be seropositive (65.7% vs. 48.0%, p = 0.03) and have higher antibody levels compared with the AstraZeneca vaccine (IgGAM ratio 3.73 vs. 2.39, p = 0.0003). T cell responses post vaccination was demonstrable in 46.2% of participants and were associated with better antibody responses but there was no difference between the two vaccines. Eleven vaccine-breakthrough infections have occurred to date, 10 of them in recipients of the AstraZeneca vaccine. CONCLUSION: SARS-CoV-2 vaccines demonstrate reduced immunogenicity in patients with antibody deficiency with evidence of vaccine breakthrough infection

    CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response.

    Get PDF
    Inhibition of the chemokine receptor CXCR4 in combination with blockade of the PD-1/PD-L1 T cell checkpoint induces T cell infiltration and anticancer responses in murine and human pancreatic cancer. Here we elucidate the mechanism by which CXCR4 inhibition affects the tumor immune microenvironment. In human immune cell-based chemotaxis assays, we find that CXCL12-stimulated CXCR4 inhibits the directed migration mediated by CXCR1, CXCR3, CXCR5, CXCR6, and CCR2, respectively, chemokine receptors expressed by all of the immune cell types that participate in an integrated immune response. Inhibiting CXCR4 in an experimental cancer medicine study by 1-wk continuous infusion of the small-molecule inhibitor AMD3100 (plerixafor) induces an integrated immune response that is detected by transcriptional analysis of paired biopsies of metastases from patients with microsatellite stable colorectal and pancreatic cancer. This integrated immune response occurs in three other examples of immune-mediated damage to noninfected tissues: Rejecting renal allografts, melanomas clinically responding to anti-PD1 antibody therapy, and microsatellite instable colorectal cancers. Thus, signaling by CXCR4 causes immune suppression in human pancreatic ductal adenocarcinoma and colorectal cancer by impairing the function of the chemokine receptors that mediate the intratumoral accumulation of immune cells.Stand Up 2 Cancer, Lustgarten Foundation, NIH

    Atypical B cells and impaired SARS-CoV-2 neutralization following heterologous vaccination in the elderly

    Get PDF
    Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response

    Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade

    Get PDF
    Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination

    Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens

    Get PDF
    BACKGROUND: Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS: Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS: We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS: Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease

    Treatment of COVID-19 with remdesivir in the absence of humoral immunity: a case report

    Get PDF
    Abstract: The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients

    Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis

    Get PDF
    Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13×10– ¹⁵) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65×10– ²⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69×10– ¹²; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity. Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR

    A protease-activatable luminescent biosensor and reporter cell line for authentic SARS-CoV-2 infection.

    Get PDF
    Funder: NIHR Cambridge BRCEfforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies
    corecore