9 research outputs found
Penetration enhancers for topical drug delivery to the ocular posterior segment: a systematic Review
There is an unmet clinical need for eye drop formulations to efficiently treat the diseases of the posterior ocular segment by non-invasive topical administration. Here, we systematically reviewed the literature on ocular penetration enhancers and their ability to transfer drugs to the posterior segment of the eye in experimental studies. Our aim was to assess which penetration enhancer is the most efficient at delivering drugs to the posterior segment of the eye, when topically applied. We conducted a comprehensive search in three electronic databases (Ovid Embase, Ovid MEDLINE, and PubMed) to identify all the relevant manuscripts reported on ocular penetration enhancers based on the PRISMA guidelines. We identified 6540 records from our primary database search and filtered them per our inclusion/exclusion criteria to select a final list of 14 articles for qualitative synthesis. Of these, 11 studies used cell penetrating peptides (CPPs), 2 used chitosan, and 1 used benzalkonium chloride (BAC) as the penetration enhancer. Cationic and amphipathic CPPs, transactivator of transcription (TAT), and penetratin can be inferred to be the best among all the identified penetration enhancers for drug delivery to the fundus oculi via topical eye drop instillation. Further high-quality experimental studies are required to ascertain their quantitative efficacyThis project is funded by the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska-Curie Actions grant agreement N° 813440 (ORBITALâOcular Research by Integrated Training and Learning)S
Improving corneal permeability of dexamethasone using penetration enhancing agents:First step towards achieving topical drug delivery to the retina
With an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA). We synthesised a novel polyacetylene (pAc) polymer and compared its activity to two previously described cell penetrating peptide (CPP) based PEAs, TAT and penetratin, with respect to increasing transcorneal permeability of DSP in a rapid ex-vivo porcine corneal assay over 60 min. The transcorneal apparent permeability coefficients (Papp) for diffusion of pAc, and fluorescein isothiocyanate (FITC) conjugated TAT and penetratin were up to 5 times higher (p < 0.001), when compared to controls. When pAc was used in formulation with DSP, an almost 5-fold significant increase was observed in Papp of DSP across the cornea (p = 0.0130), a significant 6-fold increase with TAT (p = 0.0377), and almost 7-fold mean increase with penetratin (p = 0.9540). Furthermore, we investigated whether the PEAs caused any irreversible damage to the barrier integrity of the corneal epithelium by measuring transepithelial electrical resistance (TEER) and immunostaining of tight junction proteins using zonula occludens-1 (ZO-1) and occludin antibodies. There was no damage or structural toxicity, and the barrier integrity was preserved after PEA application. Finally, an in-vitro cytotoxicity assessment of all PEAs in human retinal pigment epithelium cells (ARPE-19) demonstrated that all PEAs were very well-tolerated, with IC50 values of 64.79 mM for pAc and 1335.45 ”M and 87.26 ”M for TAT and penetratin, respectively. Our results suggest that this drug delivery technology could potentially be used to achieve a significantly higher intraocular therapeutic bioavailability after topical eye drop administration, than currently afforded
Improving corneal permeability of dexamethasone using penetration enhancing agents:First step towards achieving topical drug delivery to the retina
With an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA). We synthesised a novel polyacetylene (pAc) polymer and compared its activity to two previously described cell penetrating peptide (CPP) based PEAs, TAT and penetratin, with respect to increasing transcorneal permeability of DSP in a rapid ex-vivo porcine corneal assay over 60 min. The transcorneal apparent permeability coefficients (Papp) for diffusion of pAc, and fluorescein isothiocyanate (FITC) conjugated TAT and penetratin were up to 5 times higher (p < 0.001), when compared to controls. When pAc was used in formulation with DSP, an almost 5-fold significant increase was observed in Papp of DSP across the cornea (p = 0.0130), a significant 6-fold increase with TAT (p = 0.0377), and almost 7-fold mean increase with penetratin (p = 0.9540). Furthermore, we investigated whether the PEAs caused any irreversible damage to the barrier integrity of the corneal epithelium by measuring transepithelial electrical resistance (TEER) and immunostaining of tight junction proteins using zonula occludens-1 (ZO-1) and occludin antibodies. There was no damage or structural toxicity, and the barrier integrity was preserved after PEA application. Finally, an in-vitro cytotoxicity assessment of all PEAs in human retinal pigment epithelium cells (ARPE-19) demonstrated that all PEAs were very well-tolerated, with IC50 values of 64.79 mM for pAc and 1335.45 ”M and 87.26 ”M for TAT and penetratin, respectively. Our results suggest that this drug delivery technology could potentially be used to achieve a significantly higher intraocular therapeutic bioavailability after topical eye drop administration, than currently afforded
Implantable and transcutaneous photobiomodulation promote neuroregeneration and recovery of lost function after spinal cord injury
Spinal cord injury (SCI) is a cause of profound and irreversible damage, with no effective therapy to promote functional recovery. Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for SCI. Dose optimization studies were performed using a serum withdrawal model of injury in cultures of primary adult rat dorsal root ganglion neurons (DRGN). Implantable and transcutaneous PBM delivery protocols were developed and validated using cadaveric modeling. The efficacy of PBM in promoting recovery after SCI in vivo was studied in a dorsal column crush injury model of SCI in adult rats. Optimal neuroprotection in vitro was achieved between 4 and 22âmW/cm2. 11âmW/cm2 for 1âmin per day (0.66âJ/cm2) increased cell viability by 45% over 5âdays (p <0.0001), increasing neurite outgrowth by 25% (p < 0.01). A method for invasive application of PBM was developed using a diffusion-tipped optogenetics fiber optic. Delivery methods for PBM were developed and validated for both invasive (iPBM) and noninvasive (transcutaneous) (tcPBM) application. iPBM and tcPBM (24âmW/cm2 at spinal cord, 1âmin per day (1.44âJ/cm2) up to 7âdays) increased activation of regeneration-associated protein at 3âdays after SCI, increasing GAP43+ axons in DRGN from 18.0% (control) to 41.4%â±â10.5 (iPBM) and 45.8%â±â3.4 (tcPBM) (p < 0.05). This corresponded to significant improvements at 6âweeks post-injury in functional locomotor and sensory function recovery (p < 0.01), axonal regeneration (p < 0.01), and reduced lesion size (p < 0.01). Our results demonstrated that PBM achieved a significant therapeutic benefit after SCI, either using iPBM or tcPBM application and can potentially be developed for clinical use in SCI patients
Photobiomodulation improves functional recovery after mild traumatic brain injury
Mild traumatic brain injury (mTBI) is a common consequence of head injury but there are no recognized interventions to promote recovery of the brain. We previously showed that photobiomodulation (PBM) significantly reduced the number of apoptotic cells in adult rat hippocampal organotypic slice cultures. In this study, we first optimized PBM delivery parameters for use in mTBI, conducting cadaveric studies to calibrate 660 and 810ânm lasers for transcutaneous delivery of PBM to the cortical surface. We then used an in vivo weight drop mTBI model in adult rats and delivered daily optimized doses of 660, 810ânm, or combined 660/810ânm PBM. Functional recovery was assessed using novel object recognition (NOR) and beam balance tests, whilst histology and immunohistochemistry were used to assess the mTBI neuropathology. We found that PBM at 810, 660ânm, or 810/660ânm all significantly improved both NOR and beam balance performance, with 810ânm PBM having the greatest effects. Histology demonstrated no overt structural damage in the brain after mTBI, however, immunohistochemistry using brain sections showed significantly reduced activation of both CD11b+ microglia and glial fibrillary acidic protein (GFAP)+ astrocytes at 3âdays post-injury. Significantly reduced cortical localization of the apoptosis marker, cleaved caspase-3, and modest reductions in extracellular matrix deposition after PBM treatment, limited to choroid plexus and periventricular areas were also observed. Our results demonstrate that 810ânm PBM optimally improved functional outcomes after mTBI, reduced markers associated with apoptosis and astrocyte/microglial activation, and thus may be useful as a potential regenerative therapy
Penetration Enhancers for Topical Drug Delivery to the Ocular Posterior SegmentâA Systematic Review
There is an unmet clinical need for eye drop formulations to efficiently treat the diseases of the posterior ocular segment by non-invasive topical administration. Here, we systematically reviewed the literature on ocular penetration enhancers and their ability to transfer drugs to the posterior segment of the eye in experimental studies. Our aim was to assess which penetration enhancer is the most efficient at delivering drugs to the posterior segment of the eye, when topically applied. We conducted a comprehensive search in three electronic databases (Ovid Embase, Ovid MEDLINE, and PubMed) to identify all the relevant manuscripts reported on ocular penetration enhancers based on the PRISMA guidelines. We identified 6540 records from our primary database search and filtered them per our inclusion/exclusion criteria to select a final list of 14 articles for qualitative synthesis. Of these, 11 studies used cell penetrating peptides (CPPs), 2 used chitosan, and 1 used benzalkonium chloride (BAC) as the penetration enhancer. Cationic and amphipathic CPPs, transactivator of transcription (TAT), and penetratin can be inferred to be the best among all the identified penetration enhancers for drug delivery to the fundus oculi via topical eye drop instillation. Further high-quality experimental studies are required to ascertain their quantitative efficacy
Penetration Enhancers for Topical Drug Delivery to the Ocular Posterior SegmentâA Systematic Review
There is an unmet clinical need for eye drop formulations to efficiently treat the diseases of the posterior ocular segment by non-invasive topical administration. Here, we systematically reviewed the literature on ocular penetration enhancers and their ability to transfer drugs to the posterior segment of the eye in experimental studies. Our aim was to assess which penetration enhancer is the most efficient at delivering drugs to the posterior segment of the eye, when topically applied. We conducted a comprehensive search in three electronic databases (Ovid Embase, Ovid MEDLINE, and PubMed) to identify all the relevant manuscripts reported on ocular penetration enhancers based on the PRISMA guidelines. We identified 6540 records from our primary database search and filtered them per our inclusion/exclusion criteria to select a final list of 14 articles for qualitative synthesis. Of these, 11 studies used cell penetrating peptides (CPPs), 2 used chitosan, and 1 used benzalkonium chloride (BAC) as the penetration enhancer. Cationic and amphipathic CPPs, transactivator of transcription (TAT), and penetratin can be inferred to be the best among all the identified penetration enhancers for drug delivery to the fundus oculi via topical eye drop instillation. Further high-quality experimental studies are required to ascertain their quantitative efficacy
Improving corneal permeability of dexamethasone using penetration enhancing agents: first step towards achieving topical drug delivery to the retina
With an ever-increasing burden of vision loss caused by diseases of the posterior ocular segment, there is an unmet clinical need for non-invasive treatment strategies. Topical drug application using eye drops suffers from low to negligible bioavailability to the posterior segment as a result of static and dynamic defensive ocular barriers to penetration, while invasive delivery systems are expensive to administer and suffer potentially severe complications. As the cornea is the main anatomical barrier to uptake of topically applied drugs from the ocular surface, we present an approach to increase corneal permeability of a corticosteroid, dexamethasone sodium-phosphate (DSP), using a novel penetration enhancing agent (PEA). We synthesised a novel polyacetylene (pAc) polymer and compared its activity to two previously described cell penetrating peptide (CPP) based PEAs, TAT and penetratin, with respect to increasing transcorneal permeability of DSP in a rapid ex-vivo porcine corneal assay over 60 min. The transcorneal apparent permeability coefficients (Papp) for diffusion of pAc, and fluorescein isothiocyanate (FITC) conjugated TAT and penetratin were up to 5 times higher (p < 0.001), when compared to controls. When pAc was used in formulation with DSP, an almost 5-fold significant increase was observed in Papp of DSP across the cornea (p = 0.0130), a significant 6-fold increase with TAT (p = 0.0377), and almost 7-fold mean increase with penetratin (p = 0.9540). Furthermore, we investigated whether the PEAs caused any irreversible damage to the barrier integrity of the corneal epithelium by measuring transepithelial electrical resistance (TEER) and immunostaining of tight junction proteins using zonula occludens-1 (ZO-1) and occludin antibodies. There was no damage or structural toxicity, and the barrier integrity was preserved after PEA application. Finally, an in-vitro cytotoxicity assessment of all PEAs in human retinal pigment epithelium cells (ARPE-19) demonstrated that all PEAs were very well-tolerated, with IC50 values of 64.79 mM for pAc and 1335.45 ”M and 87.26 ”M for TAT and penetratin, respectively. Our results suggest that this drug delivery technology could potentially be used to achieve a significantly higher intraocular therapeutic bioavailability after topical eye drop administration, than currently afforded