5 research outputs found

    Experimental study on head loss due to cluster of randomly distributed non-uniform roughness elements in supercritical flow

    Get PDF
    Accurate estimation of head loss introduced via randomly placed roughness elements found in natural or constructed streams (e.g., fish passages) is essential in order to estimate flow variables in mountain streams, understand formation of niches for aquatic life, and model flow structure. Owing to the complexity of the involved processes and the often missing detailed data regarding the roughness elements, the head loss in such streams is mostly approximated using empirical models. In our study, we utilize flume experiments to analyze the effects of the spatial distribution of roughness elements on water surface levels and head loss and, moreover, use the produced data to test three empirical models estimating head loss. The experiments were performed in a 15 m long, 0.9 m wide flume with a slope of 5% under large Froude numbers (2.5–2.8). Flow velocities and water levels were measured with different flow rates at 58 points within a 3.96 m test section of the flume. We could show that different randomly arranged patterns of roughness elements significantly affected head loss (differences up to 33.6%), whereas water jumps occurred when flow depths were in the same size range as the roughness elements. The roughness element position and its size influenced water surface profiles. None of the three tested empirical models were able to well reproduce the differences in head loss due to the different patterns of roughness elements, with overestimated head loss from 12 to 94.7%, R2 from 41 to 73%, NSE from −21.1 to 0.09, and RRMSE from 18.4 to 93%. This generally indicates that these empirical models are conditionally suitable to consider head loss effects of random patterns of roughness elements

    Experimental Study on Head Loss Due to Cluster of Randomly Distributed Non-Uniform Roughness Elements in Supercritical Flow

    No full text
    Accurate estimation of head loss introduced via randomly placed roughness elements found in natural or constructed streams (e.g., fish passages) is essential in order to estimate flow variables in mountain streams, understand formation of niches for aquatic life, and model flow structure. Owing to the complexity of the involved processes and the often missing detailed data regarding the roughness elements, the head loss in such streams is mostly approximated using empirical models. In our study, we utilize flume experiments to analyze the effects of the spatial distribution of roughness elements on water surface levels and head loss and, moreover, use the produced data to test three empirical models estimating head loss. The experiments were performed in a 15 m long, 0.9 m wide flume with a slope of 5% under large Froude numbers (2.5–2.8). Flow velocities and water levels were measured with different flow rates at 58 points within a 3.96 m test section of the flume. We could show that different randomly arranged patterns of roughness elements significantly affected head loss (differences up to 33.6%), whereas water jumps occurred when flow depths were in the same size range as the roughness elements. The roughness element position and its size influenced water surface profiles. None of the three tested empirical models were able to well reproduce the differences in head loss due to the different patterns of roughness elements, with overestimated head loss from 12 to 94.7%, R2 from 41 to 73%, NSE from −21.1 to 0.09, and RRMSE from 18.4 to 93%. This generally indicates that these empirical models are conditionally suitable to consider head loss effects of random patterns of roughness elements

    Energy Loss in Steep Open Channels with Step-Pools

    No full text
    Three-dimensional numerical simulations were performed for different flow rates and various geometrical parameters of step-pools in steep open channels to gain insight into the occurrence of energy loss and its dependence on the flow structure. For a given channel with step-pools, energy loss varied only marginally with increasing flow rate in the nappe and transition flow regimes, while it increased in the skimming regime. Energy loss is positively correlated with the size of the recirculation zone, velocity in the recirculation zone and the vorticity. For the same flow rate, energy loss increased by 31.6% when the horizontal face inclination increased from 2° to 10°, while it decreased by 58.6% when the vertical face inclination increased from 40° to 70°. In a channel with several step-pools, cumulative energy loss is linearly related to the number of step-pools, for nappe and transition flows. However, it is a nonlinear function for skimming flows
    corecore