343 research outputs found

    Draft Genome Sequence of New Bacillus cereus Strain tsu1

    Get PDF
    This paper reports the draft genome sequence of new Bacillus cereus strain tsu1, isolated on an agar-cellulose plate. The draft genome sequence is 5.81 Mb, revealing 5,673 coding sequences. It contains genes for cellulose-degradation and biosynthesis pathways of polyhydroxybutyrate (PHB) and 8 rRNA genes (5S, 16S, and 23S)

    Differential Root Proteome Expression in Tomato Genotypes with Contrasting Drought Tolerance Exposed to Dehydration

    Get PDF
    A comparative proteomics study using isobaric tags for relative and absolute quantitation (iTRAQ) was performed on a mesophytic tomato (Solanum lycopersicum) cultivar and a dehydration-resistant wild species (Solanum chilense) to identify proteins that play key roles in tolerance to water deficit stress. In tomato ‘Walter’ LA3465, 130 proteins were identified, of which 104 (80%) were repressed and 26 (20%) were induced. In S. chilense LA1958, a total of 170 proteins were identified with 106 (62%) repressed and 64 (38%) induced. According to their putative molecular functions, the differentially expressed proteins belong to the following subgroups: stress proteins, gene expression, nascent protein processing, protein folding, protein degradation, carbohydrate metabolism, amino acid and nucleotide metabolism, lipid metabolism, signal transduction, and cell cycle regulation. Based on changes in protein abundance induced by the dehydration treatment, cellular metabolic activities and protein biosynthesis were suppressed by the stress. In S. chilense, dehydration treatment led to elevated accumulation of proteins involved in post-transcriptional gene regulation and fidelity in protein translation including prefoldin, which promotes protein folding without the use of adenosine-5â€Č-triphosphate (ATP), several hydrophilic proteins, and calmodulin in the calcium signal transduction pathway. Those protein changes were not found in the susceptible tomato, ‘Walter’. Within each functional protein group, proteins showing opposite changes (dehydration induced vs. repressed) in the two species were identified and roles of those proteins in conferring tolerance to water deficit stress are discussed. Information provided in this report will be useful for selection of proteins or genes in analyzing or improving dehydration tolerance in tomato cultivars

    Identification of Proteins for Salt Tolerance Using a Comparative Proteomics Analysis of Tomato Accessions with Contrasting Salt Tolerance

    Get PDF
    Tomato (Solanum lycopersicum) has a wide variety of genotypes differing in their responses to salinity. This study was performed to identify salt-induced changes in proteomes that are distinguishable among tomatoes with contrasting salt tolerance. Tomato accessions [LA4133 (a salt-tolerant cherry tomato accession) and ‘Walter’ LA3465 (a salt-susceptible accession)] were subjected to salt treatment (200 mm NaCl) in hydroponic culture. Salt-induced changes in the root proteomes of each tomato accession were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) method. In LA4133, 178 proteins showed significant differences between salt-treated and non-treated control root tissues (P ≀ 0.05); 169 proteins were induced (1.3- to 5.1-fold) and nine repressed (–1.7- to –1.3-fold). In LA3465, 115 proteins were induced (1.3- to 6.4-fold) and 23 repressed (–2.5- to –1.3-fold). Salt-responsive proteins from the two tomato accessions were involved in the following biological processes: root system development and structural integrity; carbohydrate metabolism; adenosine-5â€Č-triphosphate regeneration and consumption; amino acid metabolism; fatty acid metabolism; signal transduction; cellular detoxification; protein turnover and intracellular trafficking; and molecular activities for regulating gene transcription, protein translation, and post-translational modification. Proteins affecting diverse cellular activities were identified, which include chaperonins and cochaperonins, heat-shock proteins, antioxidant enzymes, and stress proteins. Proteins exhibiting different salt-induced changes between the tolerant and susceptible tomato accessions were identified, and these proteins were divided into two groups: 1) proteins with quantitative differences because they were induced or repressed by salt stress in both accessions but at different fold levels; and 2) proteins showing qualitative differences, where proteins were induced in one vs. repressed or not changed in the other accession. Candidate proteins for tolerance to salt and secondary cellular stresses (such as hypo-osmotic stress and dehydration) were proposed based on findings from the current and previous studies on tomato and by the use of the Arabidopsis thaliana protein database. Information provided in this report will be very useful for evaluating and breeding for plant tolerance to salt and/or water deficit stresses

    Genome Structure of Bacillus cereus tsu1 and Genes Involved in Cellulose Degradation and Poly-3-Hydroxybutyrate Synthesis

    Get PDF
    In previous work, we reported on the isolation and genome sequence analysis of Bacillus cereus strain tsu1 NCBI accession number JPYN00000000. The 36 scaffolds in the assembled tsu1 genome were all aligned with B. cereus B4264 genome with variations. Genes encoding for xylanase and cellulase and the cluster of genes in the poly-3-hydroxybutyrate (PHB) biosynthesis pathway were identified in tsu1 genome. The PHB accumulation in B. cereus tsu1 was initially identified using Sudan Black staining and then confirmed using high-performance liquid chromatography. Physical properties of these PHB extracts, when analyzed with Raman spectra and Fourier transform infrared spectroscopy, were found to be comparable to the standard compound. The five PHB genes in tsu1 (phaA, phaB, phaR, phaC, and phaP) were cloned and expressed with TOPO cloning, and the recombinant proteins were validated using peptide mapping of in-gel trypsin digestion followed by mass spectrometry analysis. The recombinant E. coli BL21 (DE3) (over)expressing phaC was found to accumulate PHB particles. The cellulolytic activity of tsu1 was detected using carboxymethylcellulose (CMC) plate Congo red assay and the shift towards low-molecular size forms of CMC revealed by gel permeation chromatography in CMC liquid culture and the identification of a cellulase in the secreted proteome

    Heat-induced Proteome Changes in Tomato Leaves

    Get PDF
    Three tomato (Solanum lycopersicum) cultivars [Walter LA3465 (heat-tolerant), Edkawi LA 2711 (unknown heat tolerance, salt-tolerant), and LA1310 (cherry tomato)] were compared for changes in leaf proteomes after heat treatment. Seedlings with four fully expanded leaves were subjected to heat treatment of 39/25 °C at a 16:8 h light–dark cycle for 7 days. Leaves were collected at 1200 hr, 4 h after the light cycle started. For ‘Walter’ LA3465, heat-suppressed proteins were geranylgeranyl reductase, ferredoxin-NADP (+) reductase, Rubisco activase, transketolase, phosphoglycerate kinase precursor, fructose–bisphosphate aldolase, glyoxisomal malate dehydrogenase, catalase, S-adenosyl-L-homocysteine hydrolase, and methionine synthase. Two enzymes were induced, cytosolic NADP-malic enzyme and superoxide dismutase. For ‘Edkawi’ LA2711, nine enzymes were suppressed: ferredoxin-NADP (+) reductase, Rubisco activase, S-adenosylmethionine synthetase, methioine synthase, glyoxisomal malate dehydrogenase, enolase, flavonol synthase, M1 family peptidase, and dihydrolipoamide dehydrogenase. Heat-induced proteins were cyclophilin, fructose-1,6-bisphosphate aldolase, transketolase, phosphoglycolate phosphatase, ATPase, photosystem II oxygen-evolving complex 23, and NAD-dependent epimerase/dehydratase. For cherry tomato LA1310, heat-suppressed proteins were aminotransferase, S-adenosyl-L-homocysteine hydrolase, L-ascorbate peroxidase, lactoylglutathione lyase, and Rubisco activase. Heat-induced enzymes were glyoxisomal malate dehydrogenase, phosphoribulokinasee, and ATP synthase. This research resulted in the identification of proteins that were induced/repressed in all tomato cultivars evaluated (e.g., Rubisco activase, methionine synthase, adenosyl-L-homocysteine hydrolase, and others) and those differentially expressed (e.g., transketolase)

    Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings

    Get PDF
    Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p \u3c 0.05, fold change \u3c0.6 or \u3e1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil drought conditions (Data are available via ProteomeXchange with identifier PXD004675)
    • 

    corecore