9 research outputs found

    The reversible effects of gossypol toxicity on male pigeons' reproductive performance

    Get PDF
    Background and Aim: Gossypol, a cotton seed derivative, is well known for its reversible antifertility in male reproduction across species. Its antifertility and reversibility effects on male reproductive function vary among species in dose-and time-dependent manners. In this study, the antifertility potential of gossypol in pigeons was evaluated for the first time to determine whether it might be used as a dietary supplement for pigeon population control. Materials and Methods: Male pigeons were assigned into three experimental groups: The gossypol-treated group (n = 12), the sham control group (n = 6), and the negative control group (n = 6). There were two experimental periods: A gossypol-feeding period of 28 days and a gossypol-free period of 28 days. During the gossypol-feeding period, birds in the gossypol-treated group were fed 4 mg of gossypol extract per day. Birds in the sham control group were fed 0.5 mL of mixed ethanol and sunflower oil, while those in the negative control group were fed 0.5 mL of phosphate buffer saline. After the gossypol-feeding phase was completed, all remaining pigeons in all groups continued to receive their regular diet for an additional 28 days (gossypol-free phase). The body weight and semen quality of the birds in the experimental groups were compared to evaluate gossypol's antifertility effect. Results: In the gossypol-treated group as compared to the control groups, the percentages of sperm motility and viability were significantly lower at 21 days, and the percentage of normal sperm morphology was significantly lower at 28 days during the gossypol-feeding period. After gossypol withdrawal, these antifertility effects were resumed and reached a comparable semen quality to the control groups within 14 days. Conclusion: Gossypol supplementation (4 mg/day for 28 days) could lower male pigeons' reproductive performance in terms of sperm motility, viability, and sperm morphology. Such infertility was, however, reversible within 14 days after gossypol withdrawal without any side effects on the pigeons, suggesting its application as a safe contraceptive feeding for male pigeons

    Support vector regression algorithm modeling to predict the parturition date of small - to medium-sized dogs using maternal weight and fetal biparietal diameter

    Get PDF
    Background and Aim: Fetal biparietal diameter (BPD) is a feasible parameter to predict canine parturition date due to its inverted correlation with days before parturition (DBP). Although such a relationship is generally described using a simple linear regression (SLR) model, the imprecision of this model in predicting the parturition date in small- to medium-sized dogs is a common problem among veterinarian practitioners. Support vector regression (SVR) is a useful machine learning model for prediction. This study aimed to compare the accuracy of SVR with that of SLR in predicting DBP. Materials and Methods: After measuring 101 BPDs in 35 small- to medium-sized pregnant bitches, we fitted the data to the routine SLR model and the SVR model using three different kernel functions, radial basis function SVR, linear SVR, and polynomial SVR. The predicted DBP acquired from each model was further utilized for calculating the coefficient of determination (R2), mean absolute error, and mean squared error scores for determining the prediction accuracy. Results: All SVR models were more accurate than the SLR model at predicting DBP. The linear and polynomial SVRs were identified as the two most accurate models (p<0.01). Conclusion: With available machine learning software, linear and polynomial SVRs can be applied to predicting DBP in small- to medium-sized pregnant bitches

    Cross-species analysis of differential transcript usage in humans and chickens with fatty liver disease

    No full text
    Background and Aim: Fatty liver disease is a common condition, characterized by excess fat accumulation in the liver. It can contribute to more severe liver-related health issues, making it a critical concern in avian and human medicine. Apart from modifying the gene expression of liver cells, the disease also alters the expression of specific transcript isoforms, which might serve as new biological markers for both species. This study aimed to identify cross species genes displaying differential expressions in their transcript isoforms in humans and chickens with fatty liver disease. Materials and Methods: We performed differential gene expression and differential transcript usage (DTU) analyses on messenger RNA datasets from the livers of both chickens and humans with fatty liver disease. Using appropriate cross-species gene identification methods, we reviewed the acquired candidate genes and their transcript isoforms to determine their potential role in fatty liver disease's pathogenesis. Results: We identified seven genes-ALG5, BRD7, DIABLO, RSU1, SFXN5, STIMATE, TJP3, and VDAC2-and their corresponding transcript isoforms as potential candidates (false discovery rate ≤0.05). Our findings showed that these genes most likely contribute to fatt

    A demonstration of the H3 trimethylation ChIP-seq analysis of galline follicular mesenchymal cells and male germ cells

    No full text
    International audienceTrimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells

    A novel cross-species differential tumor classification method based on exosome-derived microRNA biomarkers established by human-dog lymphoid and mammary tumor cell lines' transcription profiles

    No full text
    International audienceBackground and Aim: Exosome-derived microRNA (miRNA) has been widely studied as a non-invasive candidate biomarker for tumor diagnosis in humans and dogs. Its application, however, was primarily focused on intraspecies usage for individual tumor type diagnosis. This study aimed to gain insight into its application as a cross-species differential tumor diagnostic tool; we demonstrated the process of identifying and using exosome-derived miRNA as biomarkers for the classification of lymphoid and mammary tumor cell lines in humans and dogs. Materials and Methods: Exosome-derived miRNA sequencing data from B-cell lymphoid tumor cell lines (n=13), mammary tumor cell lines (n=8), and normal mammary epithelium cultures (n=4) were pre-processed in humans and dogs. F-test and rank product (RP) analyses were used to select candidate miRNA orthologs for tumor cell line classification. The classification was carried out using an optimized support vector machine (SVM) with various kernel classifiers, including linear SVM, polynomial SVM, and radial basis function SVM. The receiver operating characteristic and precision-recall curves were used to assess the performance of all models. Results: MIR10B, MIR21, and MIR30E were chosen as the candidate orthologs from a total of 236 human-dog miRNA orthologs (p≤0.01, F-test score ≥10, and RP score ≤10). Their use of polynomial SVM provided the best performance in classifying samples from various tumor cell lines and normal epithelial culture. Conclusion: The study successfully demonstrated a method for identifying and utilizing candidate human-dog exosome-derived miRNA orthologs for differential tumor cell line classification. Such findings shed light on a novel non-invasive tumor diagnostic tool that could be used in both human and veterinary medicine in the future

    Novel classifier orthologs of bovine and human oocytes matured in different melatonin environments

    No full text
    International audienceIt has been demonstrated that melatonin influences the developmental competence of both in vivo and in vitro matured oocytes. It modulates oocyte-specific gene expression patterns among mammalian species. Due to differences among study systems, the identification of the classifier orthologs—the homologous genes related among mammals that could universally categorize oocytes matured in environments with varied melatonin levels is still limitedly studied. To gain insight into such orthologs, cross-species transcription profiling meta-analysis of in vitro matured bovine oocytes and in vivo matured human oocytes in low and high melatonin environments was demonstrated in the current study. RNA-Seq data of bovine and human oocytes were retrieved from the Sequence Read Archive database and pre-processed. The used datasets of bovine oocytes obtained from culturing in the absence of melatonin and human oocytes from old patients were regarded as oocytes in the low melatonin environment (Low). Datasets from bovine oocytes cultured in 10–9 M melatonin and human oocytes from young patients were considered as oocytes in the high melatonin environment (High). Candidate orthologs differentially expressed between Low and High melatonin environments were selected by a linear model, and were further verified by Zero-inflated regression analysis. Support Vector Machine (SVM) was applied to determine the potentials of the verified orthologs as classifiers of melatonin environments. According to the acquired results, linear model analysis identified 284 candidate orthologs differentially expressed between Low and High melatonin environments. Among them, only 15 candidate orthologs were verified by Zero-inflated regression analysis (FDR ≤ 0.05). Utilization of the verified orthologs as classifiers in SVM resulted in the precise classification of oocyte learning datasets according to their melatonin environments (Misclassification rates 0.9). In conclusion, the cross-species RNA-Seq meta-analysis to identify novel classifier orthologs of matured oocytes under different melatonin environments was successfully demonstrated in this study-delivering candidate orthologs for future studies at biological levels. Such verified orthologs might provide valuable evidence about melatonin sufficiency in target oocytes-by which, the decision on melatonin supplementation could be implied

    Differential DNA methylation analysis across the promoter regions using methylated DNA immunoprecipitation sequencing profiling of porcine loin muscle

    Get PDF
    International audiencePork leanness and marbling are among the essential traits of consumer preference. To acquire knowledge about universal epigenetic regulations for improving breed selection, a meta-analysis of methylated DNA immunoprecipitation sequencing (MeDIP-seq) profiling data of mixed loin muscle types was performed in this study

    Seasonal effect on semen availability and quality of racing pigeon in Thailand

    Get PDF
    Background and Aim: Seasonal variations among geographical regions could influence pigeon semen quality differently. This study aimed to determine the seasonal effect on semen availability and quality of racing pigeons in Thailand to understand and improve breeding management in the country. Materials and Methods: Semen was collected from six fertile captive pigeons once a week during summer (March-June), monsoon (July-October), and winter (November-February) during 2019-2020. The success rate of semen collection and semen quality was determined in each season – by which changes in average temperature, humidity, and photoperiod were obtained. Results: Comparable success rates of semen collection were acquired among different seasons, while varied semen qualities were revealed. The percentages of total motility and progressive motility score of sperm were significantly lowest in summer (66.35±3.40 and 3.88±0.15, respectively) compared to monsoon (85.45±2.91 and 4.67±0.10, respectively) and winter (79.29±1.96 and 4.37±0.10, respectively), while its concentration (×109 sperm/mL) and outputs (×106 sperm) were significantly highest in winter (7.62±0.54 and 91.44±10.83, respectively) compared to summer (4.23±0.41 and 48.45±6.35, respectively) and monsoon (3.57±0.30 and 51.45±7.21, respectively). Besides, semen samples collected from birds housing at an average temperature of <29.5°C demonstrated better sperm motility sperm concentration and total sperm counts than those from at a higher temperature. Conclusion: Winter was regarded as the best season contributing the best semen quality, while summer was the worst. Due to the fluctuation of temperature during summer and winter, the seasonal temperature was implied as the major factor contributing to changes in sperm quality of racing pigeons in Thailand
    corecore