3 research outputs found

    High performance non-doped green organic light emitting diode via delayed fluorescence

    Get PDF
    P. G. thanks the Science & Engineering Research Board (SERB), India, for the Start-up Research Grant (SRG) (Grant No: SRG/2020/000161). E.Z-C. thanks the Engineering and Physical Sciences Research Council (EPSRC) EP/P010482/1 for support. P. R. thanks the Indian Institute of Science (IISc) for generous financial support and the Science & Engineering Research Board (SERB), India, for the SERB-Power Grant (SPG) (Grant No: SPG/2020/000107). B.S. thank IISc for the C. V. Raman Fellowship under the Institute of Eminence (IoE).Non-doped, delayed fluorescence organic light-emitting diodes (OLEDs) provide a route to high performance devices and simplified device fabrication. Here, two ambipolar anthracene derivatives containing a hole-transporting di-p-tolylamine and a carbazole and an electron-transporting phosphine oxide moiety are rationally designed and synthesized. The thermal and optoelectronic properties were investigated and the neat films of these compounds show high photoluminescence quantum yields of 84–87%. Non-doped OLEDs with these luminogens exhibit green emission at ∼545 nm and an EQEmax of over 7.2% due to the delayed fluorescence resulting from triplet–triplet annihilation (TTA). The devices show a high luminance of over 104 400 cd m−2. Power efficiency and current efficiency maxima are up to 23.0 lm W−1 and 28.3 cd A−1, respectively. Moreover, the devices show very low efficiency roll-off and retain 90% of the maximum efficiency even at 20 000 cd m−2. When combined with a thermally activated delayed fluorescent (TADF) assistant dopant, the green-emitting OLEDs show a high EQEmax of 17.8%.PostprintPeer reviewe

    Improved stability and efficiency of inverted triple-cation mixed-halide perovskite solar cells with CsI-modified NiOx hole transporting layer

    No full text
    Addressing the critical challenge of mitigating defect generation and enhancing the extended durability of perovskite solar cells (PeSCs) requires effective passivation materials. In our study, we investigated the impact of varying concentrations of cesium iodide (CsI), an alkali halide, on the interface layer among the hole transporting layer (HTL) and the perovskite film in a triple-cation lead hybrid halide Cs0.15FA0.81MA0.04Pb(I2.86Br0.14)3 perovskite layer. Our findings revealed that the introduction of CsI into the NiOx HTL led to improved crystallinity and a reduction in defects within the perovskite film. Consequently, the photovoltaic performance of the CsI-modified PeSC exhibited a notable enhancement. Specifically, the photoelectric conversion efficiency (PCE) increased from 18.7 % in the original PeSC, which lacked CsI modification, to 20.5 %. Moreover, this improvement in PCE was accompanied by excellent stability, with the CsI-modified PeSC retaining 80 % of its opening PCE even afterward 144 h of testing

    CCDC 1580567: Experimental Crystal Structure Determination

    No full text
    Related Article: Bahadur Sk, Vasudevan Thangaraji, Nisha Yadav, Gyana Prakash Nanda, Sannibha Das, Parthasarathy Gandeepan, Eli Zysman-Colman, Pachaiyappan Rajamalli|2021|J.Mater.Chem.C|9|15583|doi:10.1039/D1TC03849
    corecore