3 research outputs found

    SCREENING AND PRODUCTION OF ANTICARCINOGENIC ENZYME FROM ESCHERICHIA COLI CTLS20: L - ASPARAGINASE

    Get PDF
    Objective: The objective of this study was attempted to screen the production of L-asparaginase from bacteria isolated from soil samples and its enzymatic activity.Methods: Screening of L-asparaginase was performed using phenol red indicator growth medium from which the positive strains were chosen based on the colour change. The enzyme production of L-asparaginase was established by submerged fermentation followed by the molecular detection of the efficient bacterial strains.Results: The enzyme production was undertaken by submerged fermentation with the evaluation of enzymatic activity and protein content. This revealed that the strain Escherichia coli CTLS20 produced a higher yield of L-asparaginase (30.22 IU/mg), 16.91 µg/ml of protein with the specific activity of 1.787 IU/mg when compared with other bacterial strains. The efficient bacterial strains were also confirmed by 16S rRNA sequence as Escherichia coli, Acinetobacter baumnnii, Klebsiella pneumoniae and the phylogenetic tree construction revealed the evolutionary relationship of the bacterial strains.Conclusion: This study indicated that the bacterial strain E. coli CTLS20 had the ability for the higher production of L-asparaginase. This novel higher yielding bacterial asparaginase is highly desirable as better alternatives in cancer therapy.Keywords: Soil, L-asparaginase, Submerged fermentation, E. coli, Phylogenetic tre

    Inhibition of <i>mecA</i> and <i>bla<sub>CTX-M</sub></i> from MRSA and ESBL strains of diabetic foot infection by screening antibiotics compound library: an <i>in silico</i> analysis

    No full text
    A computational approach was exploited towards new molecule designing to target the inhibition of resistant genes mecA and blaCTX-M in MRSA and ESBL strains cultured from diabetic foot infected patients. The bioinformatic analysis involves the prediction of protein structures for mecA and blaCTX-M employing the Prime module of Schrodinger. The interactions were examined with the control antibiotics using the modelled protein structures, which revealed that Cefixime and Amikacin showed the highest binding affinity with mecA and blaCTX-M, respectively. According to the predictions of pharmacophores, the ADHRN hypothesis for mecA protein and the ADHR hypothesis for blaCTX-M protein were obtained. Subsequently, the antibiotic compound library from Selleckchem was retrieved, and molecular interactions studies were carried out to explore the interaction profiling of mecA with Tobramycin and blaCTX-M with Acyclovir. Further, the stability of protein-ligand interactions was validated through molecular dynamics simulations. Overall, this study suggests that the predicted pharmacophore model provides in-depth knowledge for repurposing an antibiotic drug with effective inhibition to enhance its therapeutic activity in the currently used ones. Communicated by Ramaswamy H. Sarma</p
    corecore