21 research outputs found

    A Study of Blast Pressure from Underwater Borehole Blasting

    Get PDF
    The paper presents an experimental study conducted under laboratory conditions on the measurement of the pressure waves transmitted into water that are radiated from following the detonation of an explosive charge buried in a block. In order to simulate full scale blasting operations at sea, small explosive charge of 1.8g PETN was buried in a concrete block and detonated under water. Information concerning the test set-up, instrumentation, type of explosives used, scaling factor and measurement of pressure is briefly described. The paper also presents analysis of the test results in the form of FFT’s and Transfer functions and details of its importance to practical blasting operations at sea using buried explosive charges

    Prototype Piling in Soft Clay — A Case Study of Ground Vibrations: Field Measurement

    Get PDF
    Ground vibrations are generated either by natural phenomena or by human activities. Among the natural phenomena, earthquake is the principal source of ground vibrations of most interest. Ground vibrations generated by human activities are called manmade vibrations and these vary greatly in intensity depending on the particular source of vibration. The seismic waves associated with man-made vibrations propagate in the ground and inevitably interact with structures that are above-ground or underground. This interaction induces vibrations in the structure and, in extreme cases, affect its serviceability and integrity seriously. Still, there is no method to quantify the levels of piling vibration. Estimation of amplitudes and frequencies of vibration are based on experience and site testing. Therefore, in order to characterize the ground vibration due to piling, field measurement of ground vibration during prototype pile driving in soft clay was carried out. This paper presents the details of field measurement, instrumentation, collection of vibration data, acquisition and processing of data using PC-based data acquisition system made during the pile driving. The measurement of ground and already installed pile vibrations during prototype pile driving at a construction site in Chennai was carried out. The soil at this site is loose soft clay. The pile was of the type driven casing cast-in-situ pile of 500mm (OD) diameter. The depth of penetration of the pile was 13.25m. A 4 tonne hammer with a drop height of 1m drove the 25mm thick Mild Steel (MS) tube casing. During driving, ground acceleration was measured at a distance of 5D and 25D, where D is the diameter of pile, from the centre of pile. The vertical acceleration of an already installed pile situated at a distance of 37D from the driven pile were recorded. Piezoelectric acceleration transducers, power amplifiers, and tape recorder were used for the measurement. Acceleration signals were recorded using TEAC recorder. The recorded signals were processed using PC-based Data Acquisition System with DASYLAB software. The response time-histories and spectra of ground vibrations are presented and discussed

    Field Investigation on Ground and Structural Vibrations During Prototype Pile Driving

    Get PDF
    As the land is very precious in urban areas and coastal regions, many structures are built in close proximity. When the soil is weak and heavy loads are to be carried, pile foundation is adopted for such structures. The impact caused by pile driving is a potential hazard to neighbourhood structures. Berthing structures are constructed using piles and the effect of pile driving on already installed adjacent piles is important. To predict the effect of pile driving on neighbourhood piles, measurement of ground and structural vibrations during prototype pile driving was carried out at a site in the city of Chennai, India. The soil at the site up to a depth of 19 m is mainly fine to medium sand. A driven cast in-situ pile of 600 mm diameter (D) was driven up to a depth of 15.8 m. The 25mm thick mild steel (M.S) tube casing is driven by 4.1t hammer with a drop height of 2.5m. During the pile driving, for every blow of hammer, the acceleration of the ground at various distances 5D, 8.33 D and 25 D from the pile are measured. Piezoelectric acceleration transducers, power amplifiers and taper recorder are used for measurement. The time history of vertical and horizontal ground accelerations as well as time history of vertical acceleration of an already installed pile at a distance of 6.25 m was analysed using PC based data acquisition systems. The time-histories and spectrum of ground and structural accelerations are presented

    Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection

    Get PDF
    ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%

    Wykorzystanie popiołu dennego ze spalania węgla brunatnego jako kruszywa drobnego do betonu

    No full text
    Concrete is generally produced using materials such as crushed stone and river sand to the extent of about 80-90% combined with cement and water. These materials are quarried from natural sources. Their depletion will cause strain on the environment. To prevent this, bottom ash produced at thermal power plants by burning of coal has been utilized in this investigation into making concrete. The experimental investigation presents the development of concrete containing lignite coal bottom ash as fine aggregate in various percentages of 25, 50, and 100. Compressive, split tensile, and flexural strength as part of mechanical properties; acid, sulphate attack, and sustainability under elevated temperature as part of durability properties, were determined. These properties were compared with that of normal concrete. It was concluded from this investigation that bottom ash to an extent of 25% can be substituted in place of river sand in the production of concrete.Beton jest popularnym materiałem budowlanym przygotowywanym przy użyciu lokalnie dostępnych materiałów, takich jak tłuczeń kamienny, piasek i woda. Cement natomiast jest fabrycznie produkowanym składnikiem łączącym wszystkie te materiały. Materiały są dostosowane do wymagań, dobrze wymieszane i umieszczone w formie szalunkowej. Po około 18 do 24 godzin, usuwa się formę szalunkową, a beton pozostawia się do stwardnienia, jednocześnie pielęgnując go poprzez polewanie wodą przez około 28 dni lub aż do dnia badania. W miarę wydobywania tłucznia kamiennego oraz piasku z naturalnych źródeł, wykorzystywanie tych materiałów na dużą skalę nie tylko wyczerpuje źródła, ale również negatywnie wpływa na środowisko. Zbadanie alternatyw dla tych materiałów okazuje się być tym bardziej konieczne. Obecnie działalność człowieka generuje duże ilości odpadów przemysłowych, rolniczych, itp. Jednym z takich odpadów przemysłowych jest popiół denny otrzymywany z elektrowni cieplnych po spalaniu węgla w procesie wytwarzania energii elektrycznej. Struktura popiołu dennego uznaje się za podobną do piasku rzecznego, używanego jako drobne kruszywo do wytwarzaniu betonu. Charakterystyka popiołu dennego nie wszędzie wygląda tak samo, ponieważ właściwości węgla również zmieniają się w zależności od miejsca. Popiół denny z węgla brunatnego uzyskano z elektrociepłowni Neyveli Thermal Power Plant w Indiach i wykorzystano w badaniu eksperymentalnym, jako drobne kruszywo do przygotowania betonu. Popiół denny został użyty w celu zastąpienia piasku rzecznego według wskaźnika 25%, 50% i 100%. Określono właściwości fizyczne i chemiczne popiołu dennego

    Load-Deflection Characteristics Of Steel, Polypropylene And Hybrid Fiber Reinforced Concrete Beams

    No full text
    Concrete is the most widely used construction material because of its specialty of being cast into any desired shape. The main requirements of earthquake resistant structures are good ductility and energy absorption capacity. Fiber reinforced concrete possesses high flexural and tensile strength, improved ductility, and high energy absorption over the conventional concrete in sustaining dynamic loads. The aim of this paper is to compare the properties of concrete beams in which three types of fibers are added individually. Steel fibers, polypropylene fibers and hybrid fibers were added to concrete in the weight ratio of four percentages in the preparation of four beam specimens. The fourth specimen did not contain fibers and acted as a control specimen. The dimensions of the beam specimens were 150 mm × 150 mm × 700 mm. The reinforced concrete beams of M30 grade concrete were prepared for casting and testing. Various parameters such as load carrying capacity, stiffness degradation, ductility characteristics and energy absorption capacity of FRC beams were compared with that of RC beams. The companion specimens were cast and tested to study strength properties and then the results were compared. All the beams were tested under three point bending under Universal Testing Machine (UTM). The results were evaluated with respect to modulus of elasticity, first crack load, ultimate load, and ultimate deflection. The test result shows that use of hybrid fiber improves the flexural performance of the reinforced concrete beams. The flexural behavior and stiffness of the tested beams were calculated, and compared with respect to their load carrying capacities. Comparison was also made with theoretical calculations in order to determine the load-deflection curves of the tested beams. Results of the experimental programme were compared with theoretical predictions. Based on the results of the experimental programme, it can be concluded that the addition of steel, polypropylene and hybrid fibers by 4% by weight of cement (but 2.14 % by volume of cement) had the best effect on the stiffness and energy absorption capacity of the beams

    Electrospinning of nanofibers

    No full text
    Nanotechnology is the study and development of materials at nano levels. It is one of the rapidly growing scientific disciplines due to its enormous potential in creating novel materials that have advanced applications. This technology has tremendously impacted many different science and engineering disciplines, such as electronics, materials science, and polymer engineering. Nanofibers, due to their high surface area and porosity, find applications as filter medium, adsorption layers in protective clothing, etc. Electrospinning has been found to be a viable technique to produce nanofibers. An in-depth review of research activities on the development of nanofibers, fundamental understanding of the electrospinning process, and properties of nanostructured fibrous materials and their applications is provided in this article. A detailed account on the type of fibers that have been electrospun and their characteristics is also elaborated. It is hoped that the overview article will serve as a good reference tool for nanoscience researchers in fibers, textiles, and polymer fields. Furthermore, this article will help with the planning of future research activities and better understanding of nanofiber characteristics and their applications
    corecore