22 research outputs found

    Framework and baseline examination of the German National Cohort (NAKO)

    Get PDF
    The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5

    The Division and Cell Wall Gene Cluster of Enterococcus Hirae S185

    Full text link
    A chromosomal 10355-bp segment of Enterococcus hirae S185 contains nine orfs which occur in the same order as the MraW-, FtsL-, PBP3-, MraY-, MurD-, MurG-, FtsQ-, FtsA- and FtsZ-encoding genes of the division and cell wall clusters of Escherichia coli and Bacillus subtilis. The E. hirae DNA segment lacks the genes which in E. coli encode the ligases Ddl, MurC, MurE and MurF and the integral membrane protein FtsW. The encoded E. hirae and E. coli proteins share 25% to 50% identity except FtsL and FtsQ (approximately = 14% identity)

    Use of an Alfexpress DNA Sequencer to Analyze Protein-Nucleic Acid Interactions by Band Shift Assay

    Full text link
    Gel retardation analysis, or band shift assay, is technically the simplest method to investigate protein-nucleic acid interactions. In this report, we describe a nonradioactive band shift assay using a fluorescent DNA target and an ALFexpress automatic DNA sequencer in place of the current method that utilizes radioactively end-labeled DNA target and a standard electrophoresis unit. In our study, the dsDNA targets were obtained by annealing two synthetic oligonucleotides or by PCR. In both cases, a molecule of indodicarbocyanine (CY5) was attached at the 5' OH end of one of the two synthetic oligonucleotides, with a ratio of one molecule of fluorescent dye per molecule of dsDNA. To demonstrate the feasibility of this new band shift assay method, the DNA-binding proteins selected as models were the BlaI and AmpR repressors, which are involved in the induction of the Bacillus licheniformis 749/I and Citrobacter freundii beta-lactamases, respectively. The results show that the use of an automatic DNA sequencer allows easy gel retardation analysis and provides a fast, sensitive, and quantitative method. The ALFexpress DNA sequencer has the same limit of detection as a laser fluorescence scanner and can be used instead of a FluorImager or a Molecular Imager

    Use of an Automatic DNA Sequencer for S1 Mapping: Transcriptional Analysis of the Streptomyces Coelicolor A3(2) Dnak Operon

    Full text link
    The transcription start point of the dnaK operon of Streptomyces coelicolor A3(2) has been determined by S1 mapping, using the EMBL automated fluorescent DNA sequencer. The -35 and -10 hexamers correspond to a sigma 70-type promoter. This promoter responds to heat shock and involves an inverted repeat different from the CIRCE sequence characteristic of the Gram-positive heat-shock promoters

    Use of an Automatic DNA Sequencer for S1 Mapping: Transcriptional Analysis of the Streptomyces Coelicolor A3(2) Dnak Operon

    Get PDF
    The transcription start point of the dnaK operon of Streptomyces coelicolor A3(2) has been determined by S1 mapping, using the EMBL automated fluorescent DNA sequencer. The -35 and -10 hexamers correspond to a sigma 70-type promoter. This promoter responds to heat shock and involves an inverted repeat different from the CIRCE sequence characteristic of the Gram-positive heat-shock promoters

    Structure of In31, a bla(IMP)-Containing Pseudomonas aeruginosa Integron Phyletically Related to In5, Which Carries an Unusual Array of Gene Cassettes

    No full text
    The location and environment of the acquired bla(IMP) gene, which encodes the IMP-1 metallo-β-lactamase, were investigated in a Japanese Pseudomonas aeruginosa clinical isolate (isolate 101/1477) that produced the enzyme. In this isolate, bla(IMP) was carried on a 36-kb plasmid, and similar to the identical alleles found in Serratia marcescens and Klebsiella pneumoniae clinical isolates, it was located on a mobile gene cassette inserted into an integron. The entire structure of this integron, named In31, was determined. In31 is a class 1 element belonging to the same group of defective transposon derivatives that originated from Tn402-like ancestors such as In0, In2, and In5. The general structure of In31 appeared to be most closely related to that of In5 from pSCH884, suggesting a recent common phylogeny for these two elements. In In31, the bla(IMP) cassette is the first of an array of five gene cassettes that also includes an aacA4 cassette and three original cassettes that have never been described in other integrons. The novel cassettes carry, respectively, (i) a new chloramphenicol acetyltransferase-encoding allele of the catB family, (ii) a qac allele encoding a new member of the small multidrug resistance family of proteins, and (iii) an open reading frame encoding a protein of unknown function. All the resistance genes carried on cassettes inserted in In31 were found to be functional in decreasing the in vitro susceptibilities of host strains to the corresponding antimicrobial agents

    Structure of In31, a Blaimp-Containing Pseudomonas Aeruginosa Integron Phyletically Related to In5, Which Carries an Unusual Array of Gene Cassettes

    Full text link
    peer reviewedThe location and environment of the acquired blaIMP gene, which encodes the IMP-1 metallo-beta-lactamase, were investigated in a Japanese Pseudomonas aeruginosa clinical isolate (isolate 101/1477) that produced the enzyme. In this isolate, blaIMP was carried on a 36-kb plasmid, and similar to the identical alleles found in Serratia marcescens and Klebsiella pneumoniae clinical isolates, it was located on a mobile gene cassette inserted into an integron. The entire structure of this integron, named In31, was determined. In31 is a class 1 element belonging to the same group of defective transposon derivatives that originated from Tn402-like ancestors such as In0, In2, and In5. The general structure of In31 appeared to be most closely related to that of In5 from pSCH884, suggesting a recent common phylogeny for these two elements. In In31, the blaIMP cassette is the first of an array of five gene cassettes that also includes an aacA4 cassette and three original cassettes that have never been described in other integrons. The novel cassettes carry, respectively, (i) a new chloramphenicol acetyltransferase-encoding allele of the catB family, (ii) a qac allele encoding a new member of the small multidrug resistance family of proteins, and (iii) an open reading frame encoding a protein of unknown function. All the resistance genes carried on cassettes inserted in In31 were found to be functional in decreasing the in vitro susceptibilities of host strains to the corresponding antimicrobial agents

    Dimerization and DNA binding properties of the Bacillus licheniformis 749/I BlaI repressor

    Full text link
    peer reviewedIn the absence of penicillin, the beta-lactamase encoding gene blaP of Bacillus licheniformis 749/I is negatively regulated by the transcriptional repressor BlaI. Three palindromic operator regions are recognized by BlaI: two in the blaP promoter (OP1 and OP2) and one (OP3) in the promoter of the blaI-blaR1 operon. In this study, the dissociation constant of the purified BlaI dimer was estimated at 25 muM by equilibrium ultracentrifugation. Quantitative Western blot analysis indicates that the intracellular concentrations of BlaI in B. licheniformis 749/I and Bacillus subtilis transformed by a multicopy plasmid harboring the beta-lactamase locus (blaP-blaI-blaR1) were lower than (1.9 muM) or in the same range as (75 muM) the dissociation constant, respectively. This suggests that BlaI is partially dimeric in the cytoplasm of these strains and interacts in vivo with its operators as a preformed dimer. This hypothesis is supported by band shift assays on an operator containing a randomized half-operator sequence. The global dissociation constants of the operator-BlaI dimer complexes were measured by band shift assays and estimated as K-dOP1=1.7+/-0.5 10(-15) M-2, K-dOP2=3.3+/-0.9 10(-15) M-2, and K-dOP3=10.5+/-2.5 10(-15) M-2. The role of the DNA binding properties of BlaI on the beta-lactamase regulation is discussed
    corecore