6 research outputs found

    Dietary Supplements and the Skin: Focus on Photoprotection and Antioxidant Activity—A Review

    No full text
    Skin health is not only significantly affected by ageing, but also by other lifestyle-related factors, such as sun exposure, exercise and eating habits, smoking or alcohol intake. It is known that the cutaneous tissue can exhibit visible signs of senescence, in the form of, for example, dull complexion, loss of firmness, or changes in pigmentation. Consumers attempt to improve skin health and appearance not only by cosmetic products, but also with the consumption of food supplements. Recently, there has been an increase in the amount of food supplements with claims that are related to skin and hair health. Nevertheless, the literature is still scarce in evidence of the efficacy of this type of products. Considering this scenario, we aim in this review to assemble studies and methodologies that are directed at the substantiation of the cutaneous health claims of food supplements. For example, we reviewed those that were indicative of antioxidant properties, improvement in pigmentation disorders, increased hydration or protection against the damages caused by ultraviolet radiation

    Prospecting In Vitro Antioxidant and Photoprotective Properties of Rosmarinic Acid in a Sunscreen System Developed by QbD Containing Octyl <i>p</i>-Methoxycinnamate and Bemotrizinol

    No full text
    Progressively growing diagnoses of skin cancer trigger public health concerns about excessive sun exposure, awareness of the deleterious effects of ultraviolet (UV) radiation on the skin, and the proper use of sunscreens. Studies show that bioactive molecules, such as rosmarinic acid (RA), may potentiate the photoprotective and antioxidant activity of topical formulations. This research presents the application of the concepts of quality by design (QbD) to evaluate the critical parameters of quality and the development of an optimized cosmetic formulation with RA by means of an understanding of product design space. Samples were developed using design of experiments (DoE) and they were evaluated for in vitro antioxidant activity and photoprotective efficacy, as well as for photostability through artificial irradiation. We were able to achieve the RA performance regarding antioxidant and SPF properties through in vitro experiments. We obtained the equations for predicting the in vitro antioxidant activity and SPF. Considering our sunscreen system, developed with octyl p-methoxycinnamate and bemotrizinol, the presence of RA increased its antioxidant capacity; however, the in vitro SPF was reduced when both UV filters were used. The development of multifunctional sunscreens is of utmost importance; moreover, there is a need for the rational development of formulations that ensure representative statistical tests of the effects and interactions among the components of a formulation on the desired critical quality attributes, including efficacy

    Rosmarinic Acid Multifunctional Sunscreen: Comet Assay and In Vivo Establishment of Cutaneous Attributes

    No full text
    The skin acts as a protective barrier, guarding the body against microorganisms, chemicals, and several environmental factors. Accordingly, this all-important organ must be kept healthy to maintain its optimal functionality. One approach to maintain skin health is the application of multifunction bioactive sunscreens containing antioxidant molecule(s). Rosmarinic acid (RA), a phenolic compound, is known for its antioxidant activity. Herein, the safety and efficacy of a multifunction prototype sunscreen were investigated, aiming to evaluate the performance of this polyphenol with two known and widely used UV filters (bemotrizinol and octyl p-methoxycinnamate). Samples protected the DNA fragmentation compared to UV control, by the comet assay, and showed good skin compatibility in subjects. Formulations F1 and F3 were able to increase skin hydration, and, possibly, the RA interfered with this attribute. An increase in transepidermal water loss was observed for formulations F1, F2, and F4, which may be related to the vehicle, containing the RA or not. No decreases were observed in the inflammatory reaction caused by the ethyl nicotinate with any of the samples. As a perspective, we suggest trials with a greater number of subjects or protocol modifications. Altering the vehicle qualitative and quantitative composition is also a pertinent perspective

    Rosmarinic Acid Multifunctional Sunscreen: Comet Assay and In Vivo Establishment of Cutaneous Attributes

    No full text
    The skin acts as a protective barrier, guarding the body against microorganisms, chemicals, and several environmental factors. Accordingly, this all-important organ must be kept healthy to maintain its optimal functionality. One approach to maintain skin health is the application of multifunction bioactive sunscreens containing antioxidant molecule(s). Rosmarinic acid (RA), a phenolic compound, is known for its antioxidant activity. Herein, the safety and efficacy of a multifunction prototype sunscreen were investigated, aiming to evaluate the performance of this polyphenol with two known and widely used UV filters (bemotrizinol and octyl p-methoxycinnamate). Samples protected the DNA fragmentation compared to UV control, by the comet assay, and showed good skin compatibility in subjects. Formulations F1 and F3 were able to increase skin hydration, and, possibly, the RA interfered with this attribute. An increase in transepidermal water loss was observed for formulations F1, F2, and F4, which may be related to the vehicle, containing the RA or not. No decreases were observed in the inflammatory reaction caused by the ethyl nicotinate with any of the samples. As a perspective, we suggest trials with a greater number of subjects or protocol modifications. Altering the vehicle qualitative and quantitative composition is also a pertinent perspective
    corecore