22 research outputs found

    Endothelin-Dependent Vasoconstriction in Human Uterine Artery: Application to Preeclampsia

    Get PDF
    BACKGROUND: Reduced uteroplacental perfusion, the initiating event in preeclampsia, is associated with enhanced endothelin-1 (ET-1) production which feeds the vasoconstriction of uterine artery. Whether the treatments of preeclampsia were effective on ET-1 induced contraction and could reverse placental ischemia is the question addressed in this study. We investigated the effect of antihypertensive drugs used in preeclampsia and of ET receptor antagonists on the contractile response to ET-1 on human uterine arteries. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed, ex vivo, on human uterine artery samples obtained after hysterectomy. We studied variations in isometric tension of arterial rings in response to the vasoconstrictor ET-1 and evaluated the effects of various vasodilators and ET-receptor antagonists on this response. Among antihypertensive drugs, only dihydropyridines were effective in blocking and reversing the ET-1 contractile response. Their efficiency, independent of the concentration of ET-1, was only partial. Hydralazine, alpha-methyldopa and labetalol had no effect on ET-1 induced contraction which is mediated by both ET(A) and ET(B) receptors in uterine artery. ET receptors antagonists, BQ-123 and BQ-788, slightly reduced the amplitude of the response to ET-1. Combination of both antagonists was more efficient, but it was not possible to reverse the maximal ET-1-induced contraction with antagonists used alone or in combination. CONCLUSION: Pharmacological drugs currently used in the context of preeclampsia, do not reverse ET-1 induced contraction. Only dihydropyridines, which partially relax uterine artery previously contracted with ET-1, might offer interesting perspectives to improve placental perfusion

    Aerosol Delivery of Small Hairpin Osteopontin Blocks Pulmonary Metastasis of Breast Cancer in Mice

    Get PDF
    Metastasis to the lung may be the final step in the breast cancer-related morbidity. Conventional therapies such as chemotherapy and surgery are somewhat successful, however, metastasis-related breast cancer morbidity remains high. Thus, a novel approach to prevent breast tumor metastasis is needed.Aerosol of lentivirus-based small hairpin osteopontin was delivered into mice with breast cancer twice a week for 1 or 2 months using a nose-only inhalation system. The effects of small hairpin osteopontin on breast cancer metastasis to the lung were evaluated using near infrared imaging as well as diverse molecular techniques. Aerosol-delivered small hairpin osteopontin significantly decreased the expression level of osteopontin and altered the expression of several important metastasis-related proteins in our murine breast cancer model.Aerosol-delivered small hairpin osteopontin blocked breast cancer metastasis. Our results showed that noninvasive targeting of pulmonary osteopontin or other specific genes responsible for cancer metastasis could be used as an effective therapeutic regimen for the treatment of metastatic epithelial tumors
    corecore