79 research outputs found

    Inhibition of Nitric Oxide Inhibition of Nitric Oxide Synthase Does Not Alter Dynamic Cerebral Autoregulation in Humans

    Get PDF
    The aim of this study was to determine whether inhibition of nitric oxide synthase (NOS) alters dynamic cerebral autoregulation in humans. Beat-to-beat blood pressure (BP) and cerebral blood flow (CBF) velocity (transcranial Doppler) were measured in eight healthy subjects in the supine position and during 60° head-up tilt (HUT). NOS was inhibited by intravenous N G-monomethyl-L-arginine (L-NMMA) infusion. Dynamic cerebral autoregulation was quantified by transfer function analysis of beat-to-beat changes in BP and CBF velocity. Pressor effects of L-NMMA on cerebral hemodynamics were compared with those of phenylephrine infusion. In the supine position, L-NMMA increased mean BP from 83 ± 3 to 94 ± 3 mmHg (P \u3c 0.01). However, CBF velocity remained unchanged. Consequently, cerebrovascular resistance index (CVRI) increased by 15% (P \u3c 0.05). BP and CBF velocity variability and transfer function gain at the low frequencies of 0.07-0.20 Hz did not change with L-NMMA infusion. Similar changes in mean BP, CBF velocity, and CVRI were observed after phenylephrine infusion, suggesting that increase in CVRI after L-NMMA was mediated myogenically by increase in arterial pressure rather than a direct effect of cerebrovascular NOS inhibition. During baseline tilt without L-NMMA, steady-state BP increased and CBF velocity decreased. BP and CBF velocity variability at low frequencies increased in parallel by 277% and 217%, respectively (P \u3c 0.05). However, transfer function gain remained unchanged. During tilt with L-NMMA, changes in steady-state hemodynamics and BP and CBF velocity variability as well as transfer gain and phase were similar to those without L-NMMA. These data suggest that inhibition of tonic production of NO does not appear to alter dynamic cerebral autoregulation in humans

    Nitric Oxide Synthase Inhibition Does Not Affect Regulation of Muscle Sympathetic Nerve Activity During Head-Up Tilt

    Get PDF
    To test the hypothesis that systemic inhibition of nitric oxide (NO) synthase does not alter the regulation of sympathetic outflow during head-up tilt in humans, in eight healthy subjects NO synthase was blocked by intravenous infusion of NG-monomethyl-L-arginine (L-NMMA). Blood pressure, heart rate, cardiac output, total peripheral resistance (TPR), and muscle sympathetic nerve activity (MSNA) were recorded in the supine position and during 60° head-up tilt. In the supine position, infusion of L-NMMA increased blood pressure, via increased TPR, and inhibited MSNA. However, the increase in MSNA evoked by head-up tilt during L-NMMA infusion (change in burst rate: 24 ± 4 bursts/min; change in total activity: 209 ± 36 U/min) was similar to that during head-up tilt without L-NMMA (change in burst rate: 23 ± 4 bursts/min; change in total activity: 251 ± 52 U/min, n = 6, all P \u3e 0.05). Moreover, changes in TPR and heart rate during head-up tilt were virtually identical between the two conditions. These results suggest that systemic inhibition of NO synthase with L-NMMA does not affect the regulation of sympathetic outflow and vascular resistance during head-up tilt in humans

    Effect of sensory blockade and rate of sensory stimulation on local heating induced axon reflex response in facial skin

    Get PDF
    Local neuronal circuits in non-glabrous skin drive the initial increase of the biphasic cutaneous vasodilation response to fast non-noxious heating. Voltage-sensitive Na+ (NaV) channel inhibition blocks the afferent limb of the non-glabrous forearm cutaneous axon reflex. Slow local heating does not engage this response. These mechanisms have not been adequately investigated or extended into areas associated with flushing pathology. We hypothesized that despite regional differences in sensory afferents, both sensory blockade and slowing the heating rate would abate the cutaneous axon reflex-mediated vasodilator responses in facial skin. We measured skin blood flow responses (laser-Doppler flowmetry) of 6 healthy subjects (5 female) to non-noxious forearm, cheek, and forehead local heating, expressed as a percentage of cutaneous vascular conductance at plateau (CVC = flux/mean arterial pressure). We assessed CVC during fast (1 °C/30s) and slow (1 °C/10 min) local heating to 43 °C in both NaV inhibition (topical 2.5% lidocaine/prilocaine) and control conditions. NaV inhibition decreased forearm (control: 84 ± 4, block: 34 ± 9%plateau, p < 0.001) and trended toward decreased forehead (control: 90 ± 3, block: 68 ± 3%plateau, p = 0.057) initial CVC peaks but did not alter cheek responses (control: 90 ± 3, block: 92 ± 13%plateau, p = 0.862) to fast heating. Slow heating eliminated the initial CVC peak incidence for all locations, and we observed similar results with combined slow heating and NaV inhibition. Slower sensory afferent activation rate eliminated the axon reflex response in facial and non-glabrous skin, but topical sensory blockade did not block axon reflex responses in flushing-prone cheek skin. Thus, slower heating protocols are needed to abate facial, particularly cheek, axon reflex responses

    Role of Bradykinin Type 2 Receptors in Human Sweat Secretion: Translational Evidence Does Not Support a Functional Relationship

    Get PDF
    Bradykinin increases skin blood flow via a cGMP mechanism but its role in sweating in vivo is unclear. There is a current need to translate cell culture and nonhuman paw pad studies into in vivo human preparations to test for therapeutic viability for disorders affecting sweat glands. Protocol 1: physiological sweating was induced in 10 healthy subjects via perfusing warm (46–48°C) water through a tube-lined suit while bradykinin type 2 receptor (B2R) antagonist (HOE-140; 40 μM) and only the vehicle (lactated Ringer’s) were perfused intradermally via microdialysis. Heat stress increased sweat rate (HOE-140 = +0.79 ± 0.12 and vehicle = +0.64 ± 0.10 mg/cm2/min), but no differences were noted with B2R antagonism. Protocol 2: pharmacological sweating was induced in 6 healthy subjects via intradermally perfusing pilocarpine (1.67 mg/mL) followed by the same B2R antagonist approach. Pilocarpine increased sweating (HOE-140 = +0.38 ± 0.16 and vehicle = +0.32 ± 0.12 mg/cm2/min); again no differences were observed with B2R antagonism. Last, 5 additional subjects were recruited for various control experiments which identified that a functional dose of HOE-140 was utilized and it was not sudorific during normothermic conditions. These data indicate B2R antagonists do not modulate physiologically or pharmacologically induced eccrine secretion volumes. Thus, B2R agonist/antagonist development as a potential therapeutic target for hypo- and hyperhidrosis appears unwarranted

    Financing Direct Democracy: Revisiting the Research on Campaign Spending and Citizen Initiatives

    Get PDF
    The conventional view in the direct democracy literature is that spending against a measure is more effective than spending in favor of a measure, but the empirical results underlying this conclusion have been questioned by recent research. We argue that the conventional finding is driven by the endogenous nature of campaign spending: initiative proponents spend more when their ballot measure is likely to fail. We address this endogeneity by using an instrumental variables approach to analyze a comprehensive dataset of ballot propositions in California from 1976 to 2004. We find that both support and opposition spending on citizen initiatives have strong, statistically significant, and countervailing effects. We confirm this finding by looking at time series data from early polling on a subset of these measures. Both analyses show that spending in favor of citizen initiatives substantially increases their chances of passage, just as opposition spending decreases this likelihood

    Effect of thermal stress on the vestibulosympathetic reflexes in humans

    No full text
    • …
    corecore