5,199 research outputs found
On the Spatial Correlations of Lyman Break Galaxies
Motivated by the observed discrepancy between the strong spatial correlations
of Lyman break galaxies (LBGs) and their velocity dispersions, we consider a
theoretical model in which these starbursting galaxies are associated with dark
matter halos that experience appreciable infall of material. We show using
numerical simulation that selecting halos that substantially increase in mass
within a fixed time interval introduces a ``temporal bias'' which boosts their
clustering above that of the underlying population. If time intervals
consistent with the observed LBGs star formation rates of 50 solar masses per
year are chosen, then spatial correlations are enhanced by up to a factor of
two. These values roughly correspond to the geometrical bias of objects three
times as massive. Thus, it is clear that temporal biasing must be taken into
account when interpreting the properties of Lyman break galaxies.Comment: 5 Pages, 2 Figures, Accepted for Publication in ApJ Letter
Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations
We analyse the performance of twelve different implementations of Smoothed
Particle Hydrodynamics (SPH) using seven tests designed to isolate key
hydrodynamic elements of cosmological simulations which are known to cause the
SPH algorithm problems. In order, we consider a shock tube, spherical adiabatic
collapse, cooling flow model, drag, a cosmological simulation, rotating
cloud-collapse and disc stability. In the implementations special attention is
given to the way in which force symmetry is enforced in the equations of
motion. We study in detail how the hydrodynamics are affected by different
implementations of the artificial viscosity including those with a
shear-correction modification. We present an improved first-order
smoothing-length update algorithm that is designed to remove instabilities that
are present in the Hernquist and Katz (1989) algorithm.
For all tests we find that the artificial viscosity is the most important
factor distinguishing the results from the various implementations. The second
most important factor is the way force symmetry is achieved in the equation of
motion. Most results favour a kernel symmetrization approach. The exact method
by which SPH pressure forces are included has comparatively little effect on
the results. Combining the equation of motion presented in Thomas and Couchman
(1992) with a modification of the Monaghan and Gingold (1983) artificial
viscosity leads to an SPH scheme that is both fast and reliable.Comment: 30 pages, 26 figures and 9 tables included. Submitted to MNRAS.
Postscript version available at
ftp://phobos.astro.uwo.ca/pub/etittley/papers/sphtest.ps.g
Toward an Improved Analytical Description of Lagrangian Bias
We carry out a detailed numerical investigation of the spatial correlation
function of the initial positions of cosmological dark matter halos. In this
Lagrangian coordinate system, which is especially useful for analytic studies
of cosmological feedback, we are able to construct cross-correlation functions
of objects with varying masses and formation redshifts and compare them with a
variety of analytical approaches. For the case in which both formation
redshifts are equal, we find good agreement between our numerical results and
the bivariate model of Scannapieco & Barkana (2002; SB02) at all masses,
redshifts, and separations, while the model of Porciani et al. (1998) does well
for all parameters except for objects with different masses at small
separations. We find that the standard mapping between Lagrangian and Eulerian
bias performs well for rare objects at all separations, but fails if the
objects are highly-nonlinear (low-sigma) peaks. In the Lagrangian case in which
the formation redshifts differ, the SB02 model does well for all separations
and combinations of masses, apart from a discrepancy at small separations in
situations in which the smaller object is formed earlier and the difference
between redshifts or masses is large. As this same limitation arises in the
standard approach to the single-point progenitor distribution developed by
Lacey & Cole (1993), we conclude that a more complete understanding of the
progenitor distribution is the most important outstanding issue in the analytic
modeling of Lagrangian bias.Comment: 22 pages, 8 figures, ApJ, in pres
Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical CDM Cosmogony: Half Way There?
We present a smoothed particle hydrodynamic (SPH) simulation that reproduces
a galaxy that is a moderate facsimile of those observed. The primary failing
point of previous simulations of disk formation, namely excessive transport of
angular momentum from gas to dark matter, is ameliorated by the inclusion of a
supernova feedback algorithm that allows energy to persist in the model ISM for
a period corresponding to the lifetime of stellar associations. The inclusion
of feedback leads to a disk at a redshift , with a specific angular
momentum content within 10% of the value required to fit observations. An
exponential fit to the disk baryon surface density gives a scale length within
17% of the theoretical value. Runs without feedback, with or without star
formation, exhibit the drastic angular momentum transport observed elsewhere.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter
A critical evaluation of promotional drug literatures available with prescribers at a tertiary care teaching hospital in Gujarat, India
Background: Promotional literature provided by the pharmaceutical companies is one of the important marketing strategies to prescribe. Many of these literatures do not follow ethical guidelines and contain biased and irrelevant information that may cause irrational prescribing. So we did this study with an aim to check the credibility, reliability and authenticity of the PDLs available with prescribers.Methods: Promotional drug literatures were analyzed based on various parameters and guidelines provided by world health organization. Statistical analysis was done using Microsoft Excel.Results: A total 395 promotional drug literatures were analyzed and very few of them fulfilled the ethical criteria for drug promotion. Most of them focused on providing information about generic name, brand name manufacture company name and claims about efficacy. Few of them focused on safety of drugs as less information provided about adverse reaction, precaution and drug-drug interaction. Many of them contain space occupying unnecessary pictures.Conclusions: It can be concluded that the majority of the promotional advertisements that were given to the prescribers do not follow ethical guidelines and were not able to improve rational prescribing but only have commercial benefits
Quasars: What turns them off?
(Abridged) We explore the idea that the anti-hierarchical turn-off observed
in the quasar population arises from self-regulating feedback, via an outflow
mechanism. Using a detailed hydrodynamic simulation we calculate the luminosity
function of quasars down to a redshift of z=1 in a large, cosmologically
representative volume. Outflows are included explicitly by tracking halo
mergers and driving shocks into the surrounding intergalactic medium. Our
results are in excellent agreement with measurements of the spatial
distribution of quasars, and we detect an intriguing excess of galaxy-quasar
pairs at very short separations. We also reproduce the anti-hierarchical
turnoff in the quasar luminosity function, however, the magnitude of the
turn-off falls short of that observed as well as that predicted by analogous
semi-analytic models. The difference can be traced to the treatment of gas
heating within galaxies. The simulated galaxy cluster L_X-T relationship is
close to that observed for z~1 clusters, but the simulated galaxy groups at z=1
are significantly perturbed by quasar outflows, suggesting that measurements of
X-ray emission in high-redshift groups could well be a "smoking gun" for the
AGN heating hypothesis.Comment: 16 pages, 11 figures, submitted to ApJ, comments welcome
Measuring AGN Feedback with the Sunyaev-Zel'dovich Effect
One of the most important and poorly-understood issues in structure formation
is the role of outflows driven by active galactic nuclei (AGN). Using
large-scale cosmological simulations, we compute the impact of such outflows on
the small-scale distribution of the cosmic microwave background (CMB). Like
gravitationally-heated structures, AGN outflows induce CMB distortions both
through thermal motions and peculiar velocities, by processes known as the
thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, respectively. For AGN
outflows the thermal SZ effect is dominant, doubling the angular power spectrum
on arcminute scales. But the most distinct imprint of AGN feedback is a
substantial increase in the thermal SZ distortions around elliptical galaxies,
post-starburst ellipticals, and quasars, which is linearly proportional to the
outflow energy. While point source subtraction is difficult for quasars, we
show that by appropriately stacking microwave measurements around early-type
galaxies, the new generation of small-scale microwave telescopes will be able
to directly measure AGN feedback at the level important for current theoretical
models.Comment: 12 pages, 12 figures, submitted to ApJ (comments welcome
- …