13 research outputs found

    Adsorption of chromium from electroplating wastewater using activated carbon developed from water hyacinth

    Get PDF
    Abstract Industrial wastewater polluted with high concentrations of Cr is commonly discharged into water resources without proper treatment. This gives rise to the deterioration of water quality and imposes adverse effects on public health. Therefore, this study is aimed at removing Cr from electroplating wastewater using activated carbon produced from water hyacinth under a full factorial experimental design with three factors and three levels (pH,2,5 and 8, adsorbent dose 0.5,1and1.5 in 100 mL and contact time 30, 60 and120 min). A phosphoric acid solution of 37% was used to activate the carbon, which was then subjected to thermal decomposition for 15 min at 500 °C. The activated carbon was characterized by the presence of a high surface area (203.83 m2/g) of BET, cracking of adsorbent beads of SEM morphology, amorphous nature of XRD, and many functional groups of FTIR such as hydroxyl (3283 cm−1), alkane (2920 cm−1), nitrile (2114 cm−1) and aromatics (1613 cm−1). The minimum Cr adsorption performance of 15.6% was obtained whereas maximum removal of 90.4% was recorded at the experimental condition of pH 2, adsorbent dose of 1.5 g/100 mL, and contact time of 120 min at a fixed value of initial Cr concentration of 100 mg/L. Similarly, the maximum Cr removal from real electroplating wastewater was 81.2% at this optimum point. Langmuir's model best described the experimental value at R2 0.96 which implies the adsorption is chemically bonded, homogeneous, and monolayer. Pseudo-second-order model best fits with the experimental data with R2 value of 0.99. The adsorbent was regenerated for seven cycles and the removal efficiency decreased from 93.25% to 21.35%. Finally, this technology is promising to be scaled up to an industrial level

    Development of Electrochemical Nanosensor for the Detection of Malaria Parasite in Clinical Samples

    Get PDF
    In this study, electrochemical nanosensors were developed from the synthesized metal oxide (MO) nanoparticles by supporting it on a gold electrode (Au). The activity of the developed nanosensor toward the detection of malaria biomarker (β-hematin) was determined and the optimum conditions at which the maximum detection and quantification occurred were established. β-Hematin current response at the sensors was higher when compared with the bare Au electrode and followed the order Au-CuO (C) > Au-CuO (M) > Au-Fe2O3 (M) > Au-Fe2O3 (C) > Au-Al2O3 (M) > Au-Al2O3 (C) > bare Au. The developed sensors were stable with a relatively low current drop (10.61–17.35 %) in the analyte. Au-CuO sensor had the best performance toward the biomarker and quantitatively detected P. berghei in infected mice's serum samples at 3.60–4.8 mM and P. falciparum in human blood serum samples at 0.65–1.35 mM concentration

    Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology

    Get PDF
    Abstract Tannery industries’ effluent contains a high concentration of Cr (VI) which has the potential to affect the environment and public health. Therefore, this study aimed to investigate the optimization of Cr (VI) adsorption by activated carbon (AC) derived from Eichhornia crassipes from an aqueous solution. The adsorbent was activated with dilute sulfuric acid followed by thermal activation. AC was characterized using proximate analysis, SEM, FTIR, X-ray diffraction, and the BET method. The Cr (VI) removal optimization process was performed using a central composite design under the response surface methodology. The proximate analysis showed that the moisture content, volatile matter, ash content, and fixed carbon of the activated carbon were 5.6%, 18.2%, 14.4%, and 61.8% respectively. The surface areas of the Eichhornia crassipes before activation, after activation, and after adsorption were 60.6 g/m2, 794.2 g/m2, and 412.6 g/m2 respectively. A highly porous structure with heterogeneous and irregular shapes was observed in the SEM micrograph. In the FTIR analysis, different peaks are indicated with various functional groups. The intensity of XRD peaks decreased as 2 theta values increased, which indicates the presence of an amorphous carbon arrangement. The point of zero charge (pHpzc) of the activated carbon was found to be 5.20. A maximum Cr (VI) removal of 98.4% was achieved at pH 5, contact time 90 min, adsorbent dose 2 g, and initial Cr (VI) concentration of 2.25 mg/L. Statistically significant interactions (P < 0.05) were observed between the initial Cr (VI) concentration and adsorbent dose as well as the initial Cr (VI) concentration and contact time. Langmuir adsorption isotherm fitted the experimental data best, with an R2 value of 0.99. The separation constant (RL) indicates that the adsorption process is favorable. The kinetic experimental data were best fitted with the pseudo-second-order model with an R2 value of 0.99 whereas the adsorption rate is controlled by intraparticle and extragranular diffusion processes. Generally, the AC has the potential to be a strong adsorbent candidate for wastewater treatment at the industrial level

    Delayed Solvent–Nonsolvent Demixing Preparation and Performance of a Highly Permeable Polyethersulfone Ultrafiltration Membrane

    No full text
    Membrane performance optimization is a critical preparation step that ensures optimum separation and fouling resistance. Several studies have employed additives such as carbon and inorganic nanomaterials to optimize membrane performance. These particles provide excellent results but are rather costly, unstable and toxic to several biological organs. This study demonstrated that performance enhancement can also be achieved through delayed solvent–nonsolvent demixing during phase inversion membrane preparation. The rate of solvent–nonsolvent demixing was delayed by increasing the concentration of the solvent in the coagulation bath. This study employed synthetic and real water samples and several analytical techniques to compare optimized performances and properties of membranes prepared in this study with that of nanoparticle-embedded membranes in the literature. Pure water flux and BSA rejection of the membranes prepared in this study were comparable to those of nanoparticle embedded membranes. This study also shows the influence of delayed solvent–nonsolvent demixing on membrane properties such as morphology, wettability, surface roughness and porosity, thereby showing the suitability of the technique in membrane optimization. Furthermore, fouling studies showed that membranes prepared in this study have high flux recovery when fouled by humic acid feed water (>95%) and above 50% flux recovery with real water samples

    PARAFAC model as an innovative tool for monitoring natural organic matter removal in water treatment plants

    No full text
    The increase of fluorescent natural organic matter (fNOM) fractions during drinking water treatment might lead to an increased coagulant dose and filter clogging, and can be a precursor for disinfection by-products. Consequently, efficient fNOM removal is essential, for which characterisation of fNOM fractions is crucial. This study aims to develop a robust monitoring tool for assessing fNOM fractions across water treatment processes. To achieve this, water samples were collected from six South African water treatment plants (WTPs) during winter and summer, and two plants in Belgium during spring. The removal of fNOM was monitored by assessing fluorescence excitation–emission matrices datasets using parallel factor analysis. The removal of fNOM during summer for South African WTPs was in the range 69–85%, and decreased to 42–64% in winter. In Belgian WTPs, fNOM removal was in the range 74–78%. Principal component analysis revealed a positive correlation between total fluorescence and total organic carbon (TOC). However, TOC had an insignificant contribution to the factors affecting fNOM removal. Overall, the study demonstrated the appearance of fNOM in the final chlorinated water, indicating that fNOM requires a customised monitoring technique

    Development of an adsorption-enhanced heterogeneous Fenton process for abatement of natural organic matter by kaolin-supported phytogenic nanoscale zero-valent iron

    No full text
    Natural organic matter (NOM) serves as a precursor for the formation of carcinogenic disinfection by-products when not adequately removed by conventional water treatment processes. The degradation of NOM by heterogeneous Fenton processes is particularly attractive because it results in prospects of zero sludge discharge. This work reports on NOM degradation and adsorption via the heterogeneous Fenton process using phytogenic zero-valent iron nanoparticles (nZVI) synthesised from green tea extract (Camellia sinensis) and supported on kaolin (fK-nZVI). The synthesised material was characterised using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) analysis. Morphological analysis of SEM images and BET values revealed an increase in the surface area from 11.64 m2 · g−1 for kaolin to 27.07 m2 · g−1 for the kaolin-supported nZVI (K-nZVI), thus presenting an ideal modification for effective adsorption. Fenton process parameters were optimised, that is, H2O2 concentration (5 mM) and pH (4.5). At equilibrium, the adsorption by the fK-nZVI system was 0.127 mg · g−1, a value higher than reported in other adsorption systems at equivalent adsorbent dosage and NOM concentration. The promising results obtained in this study indicate heterogeneous Fenton degradation and adsorption can be a viable and effective method for NOM removal from aqueous media. HIGHLIGHTS The Brunauer–Emmett–Teller surface area of kaolin-supported nZVI increased by 57%.; Maximum removal of bovine serum albumin (BSA) was achieved when the pH was set at 4.5 and H2O2 concentration at 5 mM.; Fenton processes increased the chemisorption capacity and subsequent oxidation of BSA by 44%.

    The Application of the Activated Carbon from Cordia africana Leaves for Adsorption of Chromium (III) from an Aqueous Solution

    No full text
    The objective of this study is to investigate the adsorption performance of activated carbon derived from the leaves of Cordia africana for the removal of Cr (III) from an aqueous solution. The plant sample was collected, washed, dried, grounded, and sieved at 125 μm mesh size. Adsorbent activation was done using H3PO4 at concentrations of 25–85% and pyrolysis temperature of 400–500°C. The activated carbon was characterized by proximate, SEM, BET, and FTIR analyses. A batch adsorption study was conducted to determine the effect of contact time, adsorbent dose, initial chromium concentration, and mixing speed on Cr (III) removal. The regeneration of the activated carbon was investigated by using 1 M of HNO3 as a desorbing solution for seven cycles. At optimum acid concentration and pyrolysis temperature, a surface area of 700 m2/g was recorded. The moisture content, volatile matter, ash composition, fixed carbon, and bulk density of the activated carbon were found to be 5.3%, 24.2%, 6.2%, 64.3%, and 0.75 g/mL, respectively. The SEM and FTIR analyses indicated that the surface morphology was full of cracks and different peaks were associated with plenty of functional groups, respectively. The maximum Cr (III) removal was attained at a contact time of 180 min (89%), adsorbent dose of 1.5 g (54%), initial concentration of 0.6 g/L (47%), and mixing speed of 300 rpm (64%). The equilibrium data were better described by Freundlich isotherm at R2 value of 0.88, which implies that the adsorption process is conducted on a heterogeneous surface. The pseudo-first-order kinetics model with R2 value of 0.99 best fits with the equilibrium data, which implies that physisorption controls the adsorption kinetics. Generally, it can be concluded that this locally prepared adsorbent is promising for the removal of chromium from industrial wastewater, but further factorial approach assessment has to be checked

    Microplastics in the Aquatic Environment—The Occurrence, Sources, Ecological Impacts, Fate, and Remediation Challenges

    No full text
    Microplastics are discharged into the environment through human activities and are persistent in the environment. With the prevalent use of plastic-based personal protective equipment in the prevention of the spread of the COVID-19 virus, the concentration of microplastics in the environment is envisaged to increase. Potential ecological and health risks emanate from their potential to adsorb and transport toxic chemicals, and ease of absorption into the cells of living organisms and interfering with physiological processes. This review (1) discusses sources and pathways through which microplastics enter the environment, (2) evaluates the fate and behavior of microplastics, (3) discusses microplastics in African aquatic systems, and (4) identifies research gaps and recommends remediation strategies. Importantly, while there is significant microplastics pollution in the aquatic environment, pollution in terrestrial systems are not widely studied. Besides, there is a dearth of information on microplastics in African aquatic systems. The paper recommends that the governments and non-governmental organizations should fund research to address knowledge gaps, which include: (1) the environmental fate of microplastics, (2) conducting toxicological studies under environmentally relevant conditions, (3) investigating toxicity mechanisms to biota, and developing mitigation measures to safeguard human health, and (4) investigating pollutants transported by microplastics. Moreover, regulatory measures, along with the circular economy strategies, may help reduce microplastic pollution
    corecore