16 research outputs found

    Constraints and Hamiltonian in Light-Front Quantized Field Theory

    Full text link
    Self-consistent Hamiltonian formulation of scalar theory on the null plane is constructed following Dirac method. The theory contains also {\it constraint equations}. They would give, if solved, to a nonlinear and nonlocal Hamiltonian. The constraints lead us in the continuum to a different description of spontaneous symmetry breaking since, the symmetry generators now annihilate the vacuum. In two examples where the procedure lacks self-consistency, the corresponding theories are known ill-defined from equal-time quantization. This lends support to the method adopted where both the background field and the fluctuation above it are treated as dynamical variables on the null plane. We let the self-consistency of the Dirac procedure determine their properties in the quantized theory. The results following from the continuum and the discretized formulations in the infinite volume limit do agree.Comment: 11 pages, Padova University preprint DFPF/92/TH/52 (December '92

    The Role of Zero-Modes in the Canonical Quantization of Heavy-Fermion QED in Light-Cone Coordinates

    Full text link
    Four-dimensional heavy-fermion QED is studied in light-cone coordinates with (anti-)periodic field boundary conditions. We carry out a consistent light-cone canonical quantization of this model using the Dirac algorithm for a system with first- and second-class constraints. To examine the role of the zero modes, we consider the quantization procedure in {the }zero-mode {and the non-zero-mode} sectors separately. In both sectors we obtain the physical variables and their canonical commutation relations. The physical Hamiltonian is constructed via a step-by-step exclusion of the unphysical degrees of freedom. An example using this Hamiltonian in which the zero modes play a role is the verification of the correct Coulomb potential between two heavy fermions.Comment: 22 pages, CWRUTH-93-5 (Latex

    Vacuum Structures in Hamiltonian Light-Front Dynamics

    Full text link
    Hamiltonian light-front dynamics of quantum fields may provide a useful approach to systematic non-perturbative approximations to quantum field theories. We investigate inequivalent Hilbert-space representations of the light-front field algebra in which the stability group of the light-front is implemented by unitary transformations. The Hilbert space representation of states is generated by the operator algebra from the vacuum state. There is a large class of vacuum states besides the Fock vacuum which meet all the invariance requirements. The light-front Hamiltonian must annihilate the vacuum and have a positive spectrum. We exhibit relations of the Hamiltonian to the nontrivial vacuum structure.Comment: 16 pages, report \# ANL-PHY-7524-TH-93, (Latex

    Light-Front View of The Axial Anomaly

    Get PDF
    Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of the quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit.Comment: 12 pages, REVTEX, one figure postscript file encode

    Nonperturbative Light-Front QCD

    Full text link
    In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for achieving this perturbative picture is the necessity of formulating the dynamics of QCD in light-front coordinates and of dealing with the complexities of renormalization which such a formulation entails. We describe the renormalization process first using a qualitative phase space cell analysis, and we then set up a precise similarity renormalization scheme with cutoffs on constituent momenta and exhibit calculations to second order. We outline further computations that remain to be carried out. There is an initial nonperturbative but nonrelativistic calculation of the hadronic masses that determines the artificial potential, with binding energies required to be fourth order in the coupling as in QED. Next there is a calculation of the leading radiative corrections to these masses, which requires our renormalization program. Then the real struggle of finding the right extensions to perturbation theory to study the strong-coupling behavior of bound states can begin.Comment: 56 pages (REVTEX), Report OSU-NT-94-28. (figures not included, available via anaonymous ftp from pacific.mps.ohio-state.edu in subdirectory pub/infolight/qcd

    Nonperturbative renormalization and the electron’s anomalous moment in large-α QED

    No full text
    corecore