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Abstract 

Motivated by an apparent puzzle of the light-front vacua incompatible with 

the axial anomaly, we have considered the two-dimensional massless Schwinger 

model for an arbitrary interpolating angle of the quantization surface. By 

examining spectral deformation of the Dirac sea under an external electric 

field semiclassically, we have found that the axial anomaly is quantization 

angle independent. This indicates an intricate nontrivial vacuum structure 

present even in the light-front limit. 
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Recently the idea of using light-front quantization [l], which has been applied success- 

fully in the context of current algebra [2] and parton model [3] in the past, was revived as 

a promising method for solving QCD [4,5]. While the hope is partly based on the obser- 

vation that the perturbative vacuum becomes extremely simple, there has never been any 

serious study of nontrivial vacuum states such as chiral symmetry breaking and 6-vacuum 

structures. As these aspects are essential to the low-energy hadron physics, it is important 

to understand how these aspects come about in the light-front quantized QCD. In simpler 

models, this issue has been studied only very recently [6], and found that the k?+ = 0 

zero-modes are responsible for nontrivial vacuum phenomena. 

In this Letter, we address another particular aspect of the nontrivial vacuum struc- 

ture: the axial anomaly [7]. It is well-known that regularization procedure in quantum 

field theory sometimes cannot preserve all of the classical symmetries. The axial anomaly 

represents a paramount example of such phenomena. The axial anomaly may be under- 

stood as an ultraviolet phenomena stemming from the linear divergence of the one-loop 

diagrams. Since the diagram is divergent, one has to regularize, for example, through 

Pauli-Villar method. It is also known that the axial anomaly can be understood as an in- 

frared phenomenon arising from the level crossing of the Dirac vacuum in the background 

of nontrivial gauge fields. The level crossing is nothing but a pair creation of the charged 

fermions. This interpretation is apparently incompatible with the light-front quantization 

since the fermion pair creation is not possible due to the k+ momentum conservations. 

It is therefore the purpose of this letter to see how the light-front quantized fermionic 

vacuum responds to produce the axial anomaly phenomena. For simplicity, we will only 

consider the two-dimensional Schwinger model [8]. 

We study the massless Schwinger model quantized with an interpolating coordinates 

[91 (a+, a-1, 

The z+,z- are taken as time and space coordinates respectively. These coordinates in- 
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terpolate between the equal-time one at 6 = 7r and the light-front one at 6 = x/2. For 

an arbitrary interpolating angle 6 we denote c - cos 6 and s G sin 6. In what follows, 

we put the space coordinate x- on a compact circle of circumference L to regulate the 

infrared 

Here, $ 

limit. The action of the Schwinger model is given by 

1 s = ~ z + ~ z - [ - - . F ~ F ~  + $i7p(ap + i e ~ , ) $ ] .  J 4 

denotes the two-component Dirac spinor and $ $'7'. We choose the Dirac 

matrices exclusively in the chiral representation. At an arbitrary interpolating angle the 

Dirac matrices in the chiral representation are given by 

They satisfy Dirac matrix algebra {7*, 7*} = 2g**I = f 2 c I  and {7+, 7-} = 2g+-I = 291. 

At equal-time limit c + 1 and s + 0,7* become 7' = d and 7l = ia2 respectively. Note 

that the (anti)-Hermiticity property 7" = +7O, 7't = -7' is valid only at equal-time 

limit. For a generic interpolating angle 7* are neither Hermitian nor anti-Hermitian; they 

are related each other through 75 G 7,,71 = a3 as 7*t = 77F76. More generally 76 defined 

as 75 G (7+7- - 7-7+)/2 = as, independent of the interpolating angle 6. Therefore it 

is always possible to decompose the Dirac fermion into LH and RH components for an 

arbitrary angle 6 

p ,  = 2xn/L. (4) 

The fermions satisfy an anti-periodic boundary condition $(z- + L) = -$(z-). Hence, 

the momentum quantum number is half-integer valued n E Z + 1/2. Free fermions of each 

chirality satisfies the following equations of motion 

[c a+ + (1 + s) a-]$L("+,  2-) = 0, 

[ (1+ s ) a +  - ca-]$R(z+,z-) = 0. ( 5 )  

Solving the above equations of motion, the basis wave functions &,,,+R, in Eq.(4) are 

given by 
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The canonical quantization then proceeds with an anticommutation relation 

{T$(z),$(y)},t=y+ = i6(z- - y-) where q ( z )  = aL/a(a+$(z)) = i$(z)y+ . In terms 

of chiral fermion components, J G { + L ( z ) ,  +t(y)),t=,,t = diX{+k, $R(y))z+,yt = 

6(z- - y-). Consequently the mode creation and annihilation operators satisfy 

{ah, 8 t h )  = {aRn, at,) = 6nl,,, and {ah, anrn) = 0. For the gauge field we choose 

a gauge &A- = 0 gauge. Not only permitting a manifestly periodic boundary condi- 

tion for A+, this gauge choice has an advantage of representing a constant electric field 

as a+A?'(z+) where A?)(z+) is the 2- independent, zero mode of A_.  The canonical 

momentum conjugate to A(_"), II, = Jdx- aL/a(a+A'_"') = La+A'_"' satisfies the usual 

commutation relation [110(z+), A?'(~+>J = -i. 

Hamiltonian of the Schwinger model projected to gauge zero-mode is expressed as 

The gauge currents J* are related to the chiral currents JL,R E dK+f; ,R$~,~  as J* = 

G $ L + r ,  f JiTs+fi+~ so that J+ = J t  + JR, J' = (1 + s)/c J t  - (1 - a)/c JR. As 

it stands, however, J* are ill-defined because of short-distance singularity of composite 

operators. One may define them in terms of the currents regularized by Schwinger's point- 

splitting method along the z- space direction 

Using the short-distance behavior of the fermion bilinear $ L 1 R $ ~ , ~  + k i / 2 7 r q / G ,  it is 

straightforward to evaluate the regularized currents as 
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Thus, gauge invariant regularization leads to an important modification of the Hamiltonian 

Pf" for the quantum mechanics of A(_"): 
I , '  

1 5 1 e' PPI = --ai +e&) (- :Q: +- :Qs:) + -L(A(_"))' 2L C C A C  

in which QL,R 

of motion for the zero-mode A?) then reads 

Jdx- JL,R and Q = QL + QR,  QS = QL - QR. The Heisenberg equation 

Because of the gauge invariance A+ -, A+ + 8+A the electric charge is manifestly 

conserved dQ/dx+ = 0. On the other hand, for a constant electric field background 

E = -8+A(_"), x+-derivative of the equation of motion for A(_") becomes 

2e a+Qs = - L E  
7r 

v ia.  

electric field E. This is precisely the axial anomaly in the massless Schwinger model. 

the axial charge is anomalously produced at a rate proportional to the constant 

In the above method, the axial anomaly has arisen from regularizing short-distance 

singularities of coincident quantum operators. As such, the axial anomaly may be in- 

terpreted as a ultraviolet phenomena. Alternative method is a direct calculation of the 

relevant Feynman diagrams. At the light-front limit, the axial anomaly was calculated in 

this way [lo]. However the calculation was rather involved compared to the perturbative 

calculation in the equal-time limit. On the other hand it is well-known that the axial 

anomaly may be understood in yet another, semiclassical way 1111 through spectral flow 

[123 crossing the zero-energy level in the Dirac vacuum and simultaneous pair production 

of left- and right-moving fermions under appropriate external gauge field. This alternative 

interpretation emphasizes that the nontrivial structure of the Dirac vacuum and that the 

axial anomaly is rather an infrared phenomenon. However, this interpretation of the axial 

anomaly poses a serious interpretational problem at a first glance since Eq.(5) indicates 

that half of the fermion degrees of freedom decouple at the light-front limit c = 0. It is 
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not clear at all how the anomaly is understood as a pair production of fermion pairs of 

opposite chirality. 

In order to resolve this difficulty, we first construct the Dirac vacuum at an arbitrary 

interpolating angle 8. We define the Dirac vacuum by filling all the negative energy levels 

of the left- and right-moving fermions to the Fock vacuum: 

As is clear the Dirac vacuum is not evenly populated between the left and the right moving 

chiral modes of fermion. This leads to an important consequence for correctly accounting 

for the axial anomaly and the vacuum energy. 

Chiral charge operators are defined by Eqs.(l2, 13). In terms of mode operators they 

are given by 

QL = 1 dx-JL :=: ah t ah ,  
n,LH 

QR E 1dx-J. :=: aRnaRn.  t 
n,RH 

Let us calculate vacuum chiral charges in an external electric field by evaluating expec- 

tation values of QL,R over the Dirac vacuum. As they stand, the vacuum chiral charges 

are formally infinite, hence, ill-defined. We therefore define regularized chiral charges by 

cutting off the ultraviolet negative modes. In order to preserve the gauge invariance, the 

regularization procedure has to preserve the gauge invariance. Thus 

Here, E is the regularization parameter and pn = 27rn/L for half-integer-valued n. Physical 

quantities will be defined by a finite contribution of the regularized quantities as the 

regulator is removed E + 0. Note that we have introduced the exponential regularization 

factor which depends explicitly on the interpolating angle 8. This means we need to 
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regularize in an asymmetric manner between the left- and the right-moving fermions. We 

will see in the following why this is the correct regularization scheme. For now we note 

that, at equal-time limit 6 + A,  the proposed regularization Eq.(15) coincides with the 

one considered by Manton and Shifman [13]. 

On the other hand, in order to take the light-front limit 8 + ~ / 2 ,  one has to be careful 

for the limiting procedure of taking E and c + 0. As is clear from the regularized chiral 

charges QL,R, one has to take E first to zero before c --+ 0 is taken. Only in this limit both 

the left- and the right-chiral charges are regularized suitably. 

It is straightforward to evaluate the regularized charges and expand them in powers of 

E 

C e € l + s  L a 
(QL(reg)) = ?A(-) - -LA!? + %(-) C [; (,A?')) - &:] + a(,)', 

(Qd red) = ;; ( A 2 l + s  24 L 

A E  l + s  A 

e) + e LA?) + ?(-) C L  [; (eA?'))' - AT] + a(€)'. (16) 

The first terms in Eq.(16) are precisely sources of the infinite constant contribution to 

each charges as the regulator is removed. Therefore we define the physical fermion charges 

by simply dropping them out. For a constant electric field, E = -8+A?", we then find 

that production rates of physical fermion charges are E + 0 

I Hence, 

d d e 
-(QL(reg)) dx+ = +'LE, 7r G(QR(reg))  = - - L E .  A 

We see that the electric charge Q QL+QR is manifestly conserved, consistent with gauge 

invariance of the proposed regulator. On the other hand, axial charge Qs = &I/ - QR is 

seen anomalous: nonzero chiral charge is produced out of the Dirac vacuum at a rate 

2e L E /A .  

This agrees with the results Eq.( 12)  obtained from Schwinger's point-splitting method. 

More importantly, the current conservation and the axial anomaly in Eq.(18) are inde- 

pendent of the interpolating angle 8. In the light-front limit, c + 0, the axial anomaly is 
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correctly reproduced and remains the same as in the equal- ime limit. The crucial point 

in the above regularization is that different regularizations are imposed to the left- and 

the right-moving chiral fermions. See Eq. (15). The regularization depends on the inter- 

polating angle 8. As is clear from the Fig. 1, right-moving fermions has to be kept for 

arbitrarily deep levels inside the Dirac sea, while for left-moving fermions a sharp damping 

is needed. This is indeed what happens for the regularized chiral charges in Eq.(15) and 

the way to keep the gauge invariance, hence, charge conservation in a manifest way for 

any interpolation angle 9 including the light-fiont limit 9 = 7r/2 . 
The spectral flow of Dirac vacuum fermions also influences the dynamics of the gauge 

field by contributing to the total energy PPI of the zero mode A?). Let us calculate the 

contribution coming from the Dirac vacuum 

where P+,f,, denotes the energy of fermions in a background of gauge field 

A short calculation shows 

Again the sum is not well-defined as it stands because of contributions from infinitely 

many modes. Regularizing the energy in a gauge invariant manner in a way similar to the 

chiral charges, we find that 

1 - s  1 -s  - (-) C (Pn - e A?)) exp [ E -  ( - p,, + e A?)] 
nl+l /2  =[z] . 

C+O 

We thus find that 

8 



hence, that the total energy Eq.(19) is given by 

= -a: 1 + - e2 L (A?) 2 . 2L X C  

This is precisely the same energy of the zero mode gauge field A?) as was found from the 

Schwinger's point-splitting method in Eq.(12). The second term, which originated from 

the nontrivial Dirac vacuum deformation under the gauge field, provides the dynamically 

generated mass e / f i  of the photon zero mode field A!"). 

In this Letter we have shown that both the axial anomaly and the dynamical mass 

generation of the two-dimensional massless Schwinger model are correctly reproduced from 

a regularized Dirac vacuum for any interpolating angle including the light-hont h i t  

8 = 7r/2. The more standard viewpoint of the anomaly and the dynamical mass generation 

was as ultraviolet phenomena. Because of infinitely many quantum states involved, the 

axial anomaly and the dynamical mass generation may alternatively be understood as 

infrared phenomena of the response of the nontrivial Dirac vacuum under an external 

gauge field. Naive light-front quantization, however, loses half of the chiral degrees of 

freedom, hence, do not admit such infrared interpretation. This is the question we have 

addressed and resolved in this Letter. Our results indicate that nontrivial structure of 

the Dirac vacuum persists at the light-front limit so that the correct axial anomaly and 

the dynamical mass generation still arises semiclassicdy from fermion pair production in 

an external electric field. It would be interesting to see if the similar interpretation can 

be made in four-dimensional QCD. Our result would also provide further insight to the 

parton interpretation of the spin-dependent deep inelastic scattering [14]. These issue are 

currently under investigation. 
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FIGURES 
FIG. 1. (a) energy-momentum dispersion relation for free fermions at arbitrary interpolating 

angle. Empty circles are vacant states; filled circles are occupied states. (b) energy-momentum 

dispersion relation at external electric field. Spectral flows produces vacant negative energy states 

and filled positive energy states. 
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