22 research outputs found

    Structural trends from a consistent set of single-crystal data of REFeAsO (RE = La, Ce, Pr, Nd, Sm, Gd, and Tb)

    Get PDF
    A new crystal growth technique for single-crystals of REFeAsO (RE = La, Ce, Pr, Nd, Sm, Gd, and Tb) using NaI/KI as flux is presented. Crystals with a size up to 300 μ\mum were isolated for single-crystal X-ray diffraction measurements. Lattice parameters were determined by LeBail fits of X-ray powder data against LaB6 standard. A consistent set of structural data is obtained and interpreted in a hard-sphere model. Effective radii for the rare-earth metal atoms for REFeAsO are deduced. The relation of the intra- and inter-plane distances of the arsenic atoms is identified as limiter of the phase formation, and its influence on Tc is discussed.Comment: 8 pages, 11 figures, 3 tables, fig. 6 changed to numerical plot, minor changes to the text, accepted for publication in PR

    Anisotropic electrical resistivity of LaFeAsO: evidence for electronic nematicity

    Get PDF
    Single crystals of LaFeAsO were successfully grown out of KI flux. Temperature dependent electrical resistivity was measured with current flow along the basal plane, \rho_perpend(T), as well as with current flow along the crystallographic c-axis, \rho_parallel(T), the latter one utilizing electron beam lithography and argon ion beam milling. The anisotropy ratio was found to lie between \rho_parallel/\rho_perpend = 20 - 200. The measurement of \rho_perpend(T) was performed with current flow along the tetragonal [1 0 0] direction and along the [1 1 0] direction and revealed a clear in-plane anisotropy already at T \leq 175 K. This is significantly above the orthorhombic distortion at T_0 = 147 K and indicates the formation of an electron nematic phase. Magnetic susceptibility and electrical resistivity give evidence for a change of the magnetic structure of the iron atoms from antiferromagnetic to ferromagnetic arrangement along the c-axis at T^\ast = 11 K.Comment: 10 pages, 6 figures, minor change

    Magnetic Properties of an Effective Spin-12\frac{1}{2} Triangular-Lattice Compound LiYbS2_2

    Full text link
    Here, we report the synthesis and magnetic properties of a Yb-based triangular-lattice compound LiYbS2_2. At low temperatures, it features an effective spin-12\frac{1}{2} state due to the combined effect of crystal electric field and spin orbit coupling. Magnetic susceptibility measurements and 7^7Li nuclear magnetic resonance experiments reveal the absence of magnetic long range ordering down to 2~K, which suggests a possible quantum spin liquid ground state. A dominant antiferromagnetic nearest neighbour exchange interaction J/kBJ/k_{\rm B}\simeq 5.3~K could be extracted form the magnetic susceptibility. The NMR linewidth analysis yields the coupling constant between the Li nuclei and Yb3+^{3+} ions which was found to be purely dipolar in nature.Comment: (accepted

    Yb delafossites: unique exchange frustration of 4f spin 1/2 moments on a perfect triangular lattice

    Full text link
    While the Heisenberg model for magnetic Mott insulators on planar lattice structures is comparatively well understood in the case of transition metal ions, the intrinsic spin-orbit entanglement of 4f magnetic ions on such lattices shows fascinating new physics largely due to corresponding strong anisotropies both in their single-ion and their exchange properties. We show here that the Yb delafossites, containing perfect magnetic Yb3+^{3+} triangular lattice planes with pseudospin s=1/2s=1/2 at low temperatures, are an ideal platform to study these new phenomena. Competing frustrated interactions may lead to an absence of magnetic order associated to a gapless spin liquid ground state with a huge linear specific heat exceeding that of many heavy fermions, whereas the application of a magnetic field induces anisotropic magnetic order with successive transitions into different long ranged ordered structures. In this comparative study, we discuss our experimental findings in terms of a unified crystal-field and exchange model. We combine electron paramagnetic resonance (EPR) experiments and results from neutron scattering with measurements of the magnetic susceptibility, isothermal magnetization up to full polarization, and specific heat to determine the relevant model parameters. The impact of the crystal field is discussed as well as the symmetry-compatible form of the exchange tensor, and we give explicit expressions for the anisotropic g factor, the temperature dependence of the susceptibility, the exchange-narrowed EPR linewidth and the saturation field.Comment: 20 pages, 7 figures, to appear in Physical Review

    Magnetic behavior of EuCu2As2: Delicate balance between antiferromagnetic and ferromagnetic order

    Full text link
    The Eu-based compound, EuCu2As2, crystallizing in the ThCr2Si2-type tetragonal structure, has been synthesized and its magnetic behavior has been investigated by magnetization (M), heat-capacity (C) and electrical resistivity (rho) measurements as a function of temperature (T) and magnetic field (H) as well as by 151Eu Moessbauer measurements. The results reveal that Eu is divalent ordering antiferromagnetically below 15 K in the absence of magnetic field, apparently with the formation of magnetic Brillouin-zone boundary gaps. A fascinating observation is made in a narrow temperature range before antiferromagnetism sets in: That is, there is a remarkable upturn just below 20 K in the plot of magnetic susceptibility versus T even at low fields, as though the compound actually tends to order ferromagnetically. There are corresponding anomalies in the magnetocaloric effect data as well. In addition, a small application of magnetic field (around 1 kOe at 1.8 K) in the antiferromagnetic state causes spin-reorientation effect. These results suggest that there is a close balance between antiferromagnetism and ferromagnetism in this compoundComment: Phys. Rev. B, in pres

    Electrical resistivity and tunneling anomalies in CeCuAs2

    Full text link
    The compound CeCuAs2 is found to exhibit negative temperature (T) coefficient of electrical resistivity (rho) under ambient pressure conditions in the entire T-range of investigation (45 mK to 300 K), even in the presence of high magnetic fields. Preliminary tunneling spectroscopic measurements indicate the existence of a psuedo-gap at least at low temperatures, thereby implying that this compound could be classified as a Kondo semi-conductor, though rho(T) interestingly is not found to be of an activated type.Comment: To appear in the proceedings of SCES200

    Dilution of the magnetic lattice in the Kitaev candidate α\alpha-RuCl3_3 by Rh3+^{3+} doping

    Get PDF
    Magnetic dilution of a well-established Kitaev candidate system is realized in the substitutional Ru1x_{1-x}Rhx_xCl3_3 series (x=0.020.6x = 0.02-0.6). Optimized syntheses protocols yield uniformly-doped single crystals and polycrystalline powders that are isostructural to the parental α\alpha-RuCl3_3 as per X-ray diffraction. The Rh content xx is accurately determined by the quantitative energy-dispersive X-ray spectroscopy technique with standards. We determine the magnetic phase diagram of Ru1x_{1-x}Rhx_xCl3_3 for in-plane magnetic fields from magnetization and specific-heat measurements as a function of xx and stacking periodicity, and identify the suppression of the magnetic order at x0.2x \approx 0.2 towards a disordered phase, which does not show any clear signature of freezing into a spin glass. Comparing with previous studies on the substitution series Ru1x_{1-x}Irx_xCl3_3, we propose that chemical pressure would contribute to the suppression of magnetic order especially in Ru1x_{1-x}Irx_xCl3_3 and that the zigzag magnetic ground state appears to be relatively robust with respect to the dilution of the Kitaev--Γ\Gamma--Heisenberg magnetic lattice. We also discovered a slight dependence of the magnetic properties on thermal cycling, which would be due to an incomplete structural transition

    Enhanced electrical resistivity before N\'eel order in the metals, RCuAs2_2 (R= Sm, Gd, Tb and Dy

    Full text link
    We report an unusual temperature (T) dependent electrical resistivity(ρ\rho) behavior in a class of ternary intermetallic compounds of the type RCuAs2_2 (R= Rare-earths). For some rare-earths (Sm, Gd, Tb and Dy) with negligible 4f-hybridization, there is a pronounced minimum in ρ\rho(T) far above respective N\'eel temperatures (TN_N). However, for the rare-earths which are more prone to exhibit such a ρ\rho(T) minimum due to 4f-covalent mixing and the Kondo effect, this minimum is depressed. These findings, difficult to explain within the hither-to-known concepts, present an interesting scenario in magnetism.Comment: Physical Review Letters (accepted for publication
    corecore