590 research outputs found

    Search for a vector-like quark Tâ€Č → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark Tâ€Č, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first Tâ€Č search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet Tâ€Č states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a Tâ€Č quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength ÎșT = 0.25 and a relative decay width Γ/MTâ€Č < 5%

    Search for pair-produced vector-like leptons in final states with third-generation leptons and at least three b quark jets in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search is reported for high-mass hadronic resonances that decay to a parton and a Lorentz-boosted resonance, which in turn decays into a pair of partons. The search is based on data collected with the CMS detector at the LHC in proton-proton collisions at , corresponding to an integrated luminosity of 138. The boosted resonance is reconstructed as a single wide jet with substructure consistent with a two-body decay. The high-mass resonance is thus considered as a dijet system. The jet substructure information and the kinematic properties of cascade resonance decays are exploited to disentangle the signal from the large quantum chromodynamics multijet background. The dijet mass spectrum is analyzed for the presence of new high-mass resonances, and is found to be consistent with the standard model background predictions. Results are interpreted in a warped extra dimension model where the high-mass resonance is a Kaluza–Klein gluon, the boosted resonance is a radion, and the final state partons are all gluons. Limits on the production cross section are set as a function of the Kaluza–Klein gluon and radion masses. These limits exclude at 95% confidence level models with Kaluza–Klein gluon masses in the range 2.0 to 4.3 TeV and radion masses in the range 0.20 to 0.74 TeV. By exploring a novel experimental signature, the observed limits on the Kaluza–Klein gluon mass are extended by up to about 1 TeV compared to previous searches

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    Get PDF
    The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb-1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Measurement of the B0^{0}s_{s} → ÎŒ+^{+} Ό−^{-} decay properties and search for the B0^{0} → ÎŒ+^{+}Ό−^{-} decay in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for heavy resonances decaying to Z(ΜΜˉ\bar{Îœ}) V(qqˉ\bar{q}â€Č) in proton-proton collisions at √s = 13 TeV

    Get PDF

    Measurement of W±^{±}γ differential cross sections in proton-proton collisions at s\sqrt{s} = 13 TeV and effective field theory constraints

    Get PDF
    Differential cross section measurements of W±γ production in proton-proton collisions at s\sqrt{s} =13  TeV are presented. The data set used in this study was collected with the CMS detector at the CERN LHC in 2016–2018 with an integrated luminosity of 138  fb−1. Candidate events containing an electron or muon, a photon, and missing transverse momentum are selected. The measurements are compared with standard model predictions computed at next-to-leading and next-to-next-to-leading orders in perturbative quantum chromodynamics. Constraints on the presence of TeV-scale new physics affecting the WWÎł vertex are determined within an effective field theory framework, focusing on the O3W operator. A simultaneous measurement of the photon transverse momentum and the azimuthal angle of the charged lepton in a special reference frame is performed. This two-dimensional approach provides up to a factor of ten more sensitivity to the interference between the standard model and the O3W contribution than using the transverse momentum alone

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and , decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 and resonances with masses below are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and , respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb

    Observation of the Bc+_\mathrm{c}^+ Meson in Pb-Pb and pp Collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV and Measurement of its Nuclear Modification Factor

    Get PDF
    The Bc+_\mathrm{c}^+ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the Bc+_\mathrm{c}^+ meson in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV , via the Bc+_\mathrm{c}^+ → (J/ψ → ÎŒ+^+Ό−^−)ÎŒ+^+ΜΌ_ÎŒ decay. The Bc+_\mathrm{c}^+ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The Bc+_\mathrm{c}^+meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma
    • 

    corecore