56,996 research outputs found

    Localized quantum walks as secured quantum memory

    Full text link
    We show that a quantum walk process can be used to construct and secure quantum memory. More precisely, we show that a localized quantum walk with temporal disorder can be engineered to store the information of a single, unknown qubit on a compact position space and faithfully recover it on demand. Since the localization occurss with a finite spread in position space, the stored information of the qubit will be naturally secured from the simple eavesdropper. Our protocol can be adopted to any quantum system for which experimental control over quantum walk dynamics can be achieved.Comment: 7 pages, 4 figure

    Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R^2

    Full text link
    We construct finite-dimensional invariant manifolds in the phase space of the Navier-Stokes equation on R^2 and show that these manifolds control the long-time behavior of the solutions. This gives geometric insight into the existing results on the asymptotics of such solutions and also allows one to extend those results in a number of ways.Comment: 46 pages, 3 figure

    Adaptive Predictive Control Using Neural Network for a Class of Pure-feedback Systems in Discrete-time

    Get PDF
    10.1109/TNN.2008.2000446IEEE Transactions on Neural Networks1991599-1614ITNN

    Phases of random antiferromagnetic spin-1 chains

    Full text link
    We formulate a real-space renormalization scheme that allows the study of the effects of bond randomness in the Heisenberg antiferromagnetic spin-1 chain. There are four types of bonds that appear during the renormalization flow. We implement numerically the decimation procedure. We give a detailed study of the probability distributions of all these bonds in the phases that occur when the strength of the disorder is varied. Approximate flow equations are obtained in the weak-disorder regime as well as in the strong disorder case where the physics is that of the random singlet phase.Comment: 29 pages, 12 encapsulated Postscript figures, REVTeX 3.
    corecore