14 research outputs found

    Background diet influences TMAO concentrations associated with red meat intake without influencing apparent hepatic TMAO-related activity in a porcine model

    Get PDF
    Red meat has been associated with an increased cardiovascular disease (CVD) risk, possibly through gut microbial-derived trimethylamine-N-oxide (TMAO). However, previous reports are conflicting, and influences from the background diet may modulate the impact of meat consumption. This study investigated the effect of red and white meat intake combined with two different background diets on urinary TMAO concentration and its association with the colon microbiome in addition to apparent hepatic TMAO-related activity. For 4 weeks, 32 pigs were fed chicken or red and processed meat combined with a prudent or western background diet. 1H NMR-based metabolomics analysis was conducted on urine samples and hepatic mRNA expression of TMAO-related genes determined. Lower urinary TMAO concentrations were observed after intake of red and processed meat when consumed with a prudent compared to a western background diet. In addition, correlation analyses between urinary TMAO concentrations and relative abundance of colon bacterial groups suggested an association between TMAO and specific bacterial taxa. Diet did not affect the hepatic mRNA expression of genes related to TMAO formation. The results suggest that meat-induced TMAO formation is regulated by mechanisms other than alterations at the hepatic gene expression level, possibly involving modulations of the gut microbiota

    Krill Protein Hydrolysate Provides High Absorption Rate for All Essential Amino Acids—A Randomized Control Cross-Over Trial

    No full text
    Background: adequate protein intake is essential to humans and, since the global demand for protein-containing foods is increasing, identifying new high-quality protein sources is needed. In this study, we investigated the acute postprandial bioavailability of amino acids (AAs) from a krill protein hydrolysate compared to a soy and a whey protein isolate. Methods: the study was a randomized, placebo-controlled crossover trial including ten healthy young males. On four non-consecutive days, volunteers consumed water or one of three protein-matched supplements: whey protein isolate, soy protein isolate or krill protein hydrolysate. Blood samples were collected prior to and until 180 min after consumption. Serum postprandial AA concentrations were determined using 1H NMR spectroscopy. Hunger and satiety were assessed using visual analogue scales (VAS). Results: whey and krill resulted in significantly higher AA concentrations compared to soy between 20–60 min and 20–40 min after consumption, respectively. Area under the curve (AUC) analyses revealed that whey resulted in the highest postprandial serum concentrations of essential AAs (EAAs) and branched chain AAs (BCAAs), followed by krill and soy, respectively. Conclusions: krill protein hydrolysate increases postprandial serum EAA and BCAA concentrations in a superior manner to soy protein isolate and thus might represent a promising future protein source in human nutrition

    Enzymatic Hydrolysis of a Collagen Hydrolysate Enhances Postprandial Absorption Rate—A Randomized Controlled Trial

    No full text
    Collagen is characterized by its high content of glycine, proline and hydroxyproline, and is found to exert beneficial effects on joint pain related to activity and osteoarthritis. However, to exert any beneficial effects it is essential that collagen is optimally absorbed. This study aimed to investigate the postprandial absorption of collagen and elucidate the impact of an exogenous enzymatic hydrolysis on absorption rate and bioavailability. A randomized, blinded, cross-over study was conducted where ten healthy male subjects received either 35 g enzymatically hydrolyzed collagen protein (EHC), 35 g non-enzymatically hydrolyzed collagen protein (NC) or placebo (250 mL water) on three nonconsecutive days. Blood samples were drawn before, and up to 240 min following, ingestion and the blood metabolome was characterized by nuclear magnetic resonance (NMR)-based metabolomics. A significant increase in the plasma concentration of nearly all amino acids (AAs) was observed over a 240 min period for both EHC and NC. In addition, the absorption rate and bioavailability of glycine, proline and hydroxyproline were significantly higher for EHC (p < 0.05). In conclusion, ingestion of collagen hydrolysates increases postprandial plasma concentrations of AAs over a period of 240 min, and an enzymatic hydrolysis increases the absorption rate and bioavailability of the collagen-rich AAs glycine, proline and hydroxyproline

    Effect of Dairy Matrix on the Postprandial Blood Metabolome

    No full text
    This study investigated the postprandial plasma metabolome following consumption of four dairy matrices different in texture and structure: cheddar cheese (Cheese), homogenized cheddar cheese (Hom. Cheese), and micellar casein isolate (MCI) with cream (MCI Drink) or a MCI Gel. An acute, randomized, crossover trial in male participants (n = 25) with four test days was conducted. Blood samples were collected during an 8-h postprandial period after consumption of a meal similar in micro- and macronutrients containing one of the four dairy matrices, and the metabolome was analyzed using nuclear magnetic resonance (NMR) spectroscopy. A liquid dairy matrix (MCI Drink) resulted in a faster absorption of amino acids compared to products, representing either a semi-solid (MCI Gel and Hom. Cheese) or solid (Cheese) dairy matrix. For the MCI Gel, plasma concentration of acetic acid and formic acid increased approximately 2 h following consumption, while 3-hydroxybyturate and acetoacetic acid increased approximately 6 h after consumption. The structure and texture of the dairy matrix affected the postprandial absorption of amino acids, as revealed by the plasma metabolome. Our study furthermore pointed at endogenous effects associated with consumption of dairy products containing glucono-δ-lactone

    Long-term daily high-protein, drained yoghurt consumption alters abundance of selected functional groups of the human gut microbiota and fecal short-chain fatty acid profiles in a cohort of overweight and obese women

    No full text
    The consumption of fermented foods has gained considerable attention due to the ability to deliver live microbes with specific enzymatic activities, and fermentation metabolites, which might play a role in health promotion or disease prevention. The aim of this study was to determine the impact of long-term daily consumption of a high-protein drained yoghurt (Skyr) on intestinal microbial ecology and fermentation activity in a free-living cohort of overweight and obese women (n = 29). Longitudinal analysis and quantitative microbiota profiling identified time intervals with significantly differentially abundant taxa during intervention that differed in functional activity. Our results suggest that ingestion of Skyr persistently modified intestinal microbial cross-feeding activities which altered fecal short chain fatty acid profiles. This study provides a framework indicating the potential of fermented dairy containing starter cultures, lactose and lactate in individualized nutrition or microbiome engineering due to nutritive and microbial components
    corecore