3 research outputs found

    Analysis of factor D isoforms in Malpuech-Michels-Mingarelli-Carnevale patients highlights the role of MASP-3 as a maturase in the alternative pathway of complement.

    No full text
    Factor D (FD), which is also known as adipsin, is regarded as the first-acting protease of the alternative pathway (AP) of complement. It has been suggested that FD is secreted as a mature enzyme that does not require subsequent activation. This view was challenged when it was shown that mice lacking mannose-binding lectin (MBL)-associated serine protease-1 (MASP-1) and MASP-3 contain zymogenic FD (pro-FD), and it is becoming evident that MASP-3 is implicated in pro-FD maturation. However, the necessity of MASP-3 for pro-FD cleavage has been questioned, because AP activity is still observed in sera from MASP-1/3-deficient Malpuech-Michels-Mingarelli-Carnevale (3MC) patients. The identification of a novel 3MC patient carrying a previously unidentified MASP-3 G665S mutation prompted us to develop an analytical isoelectric focusing technique that resolves endogenous FD variants in complex samples. This enabled us to show that although 3MC patients predominantly contain pro-FD, they also contain detectable levels of mature FD. Moreover, using isoelectric focusing analysis, we show that both pro-FD and FD are present in the circulation of healthy donors. We characterized the naturally occurring 3MC-associated MASP-3 mutants and found that they all yielded enzymatically inactive proteins. Using MASP-3-depleted human serum, serum from 3MC patients, and Masp1/3(-/-) mice, we found that lack of enzymatically active MASP-3, or complete MASP-3 deficiency, compromises the conversion of pro-FD to FD. In summary, our observations emphasize that MASP-3 acts as an important maturase in the AP of complement, while also highlighting that there exists MASP-3-independent pro-FD maturation in 3MC patients

    Identification of a potential biomarker panel for the intake of the common dietary trans fat elaidic acid (transincrement9-C18:1)

    No full text
    Trans fatty acid intake has been correlated to an unfavorable plasma lipoprotein profile and an increased cardiovascular disease risk. The present study aimed to identify a plasma protein biomarker panel related to human intake of elaidic acid. The human liver cell line HepG2-SF was used as a model system, and the cells were maintained for seven days in serum-free medium containing 100 μM elaidic acid (transincrement9-C18:1), oleic acid (cisincrement9-C18:1) or stearic acid (C18:0). The secretomes were analyzed by stable isotope labeling of amino acids in cell culture (SILAC), difference in gel electrophoresis (DIGE) and gene expression microarray analysis. Twelve proteins were found to be differentially regulated based on SILAC data (> 1.3 fold change, P-value < 0.05), 13 proteins were found to be differentially regulated based on DIGE analysis (> 1.3 fold change, P-value < 0.05), and 17 mRNA transcripts encoding extracellular proteins were determined to be affected (> 1.3 fold change, P-value < 0.01) following the addition of elaidic acid compared to oleic acid or stearic acid. The results revealed that 37 proteins were regulated specifically in response to elaidic acid exposure, and nine of these proteins were confirmed to be regulated in this manner by using selected reaction monitoring mass spectrometry. © 2012 Elsevier B.V

    A unique network of attack, defence and competence on the outer membrane of the periodontitis pathogen Tannerella forsythia

    No full text
    Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct β-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new “bilobal” or the classic “standard” mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system. © 2023 The Royal Society of Chemistry
    corecore