52 research outputs found

    Composition and structure of Pd nanoclusters in SiOx_x thin film

    Full text link
    The nucleation, distribution, composition and structure of Pd nanocrystals in SiO2_2 multilayers containing Ge, Si, and Pd are studied using High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Photoelectron Spectroscopy (XPS), before and after heat treatment. The Pd nanocrystals in the as deposited sample seem to be capped by a layer of PdOx_x. A 1-2 eV shift in binding energy was found for the Pd-3d XPS peak, due to initial state Pd to O charge transfer in this layer. The heat treatment results in a decomposition of PdO and Pd into pure Pd nanocrystals and SiO2_2

    In-situ electron loss spectroscopy reveals surface dehydrogenation of hydrated ceria nanoparticles at elevated temperatures

    Get PDF
    Ceria (CeO2) exhibits high reversible oxygen storage capacity at intermediate temperatures (500–800 °C) related to an extraordinary and not fully understood reduction of its surfaces. We have investigated pristine and alcohol-dispersed commercially available ceria nanoparticles by in-situ scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) to examine the dynamic changes during the initial redox reaction process of ceria nanoparticles in an ultra-high vacuum atmosphere using an in-situ heating holder. High spatially resolved EELS was used to estimate the amounts of Ce3+ and Ce4+ in the nanoparticles as a function of temperature, based on the white-line ratios M5/M4 of the EELS spectra. The results show a nm-range thick surface layer rich in Ce3+ on pristine particles prior to heating. During heating, this oxidises to Ce4+. Heating in high vacuum should normally not lead to oxidation, but the observed results can be understood if the surface layer has an oxyhydroxide composition such as CeOOH, which by heating in the vacuum dehydrogenates and hence oxidises to CeO2, a process that requires diffusion of hydrogen only. This process occurred for all samples, but was more pronounced for the particles that were previously dispersed in ethanol. Thermogravimetric analysis (TGA) by heating the pristine powder in dry atmosphere yielded a considerable weight loss confirming the content of hydroxide and probably water in and on the CeO2 particles. The results suggest that CeO2 surfaces are reduced to a layer of oxyhydroxide by hydrogen-containing molecules like water vapour or alcohols.publishedVersio

    Plasmonic properties of aluminium nanowires in amorphous silicon

    Get PDF
    Plasmonic structures can help enhance optical activity in the ultraviolet (UV) region and therefore enhancing photocatalytic reactions and the detection of organic and biological species. Most plasmonic structures are composed of Ag or Au. However, producing structures small enough for optical activity in the UV region has proved difficult. In this study, we demonstrate that aluminium nanowires are an excellent alternative. We investigated the plasmonic properties of the Al nanowires as well as the optoelectronic properties of the surrounding a − Si matrix by combining scanning transmission electron microscopy imaging, electron energy loss spectroscopy and electrodynamic modelling. We have found that the Al nanowires have distinct plasmonic modes in the UV and far UV region, from 0.75 eV to 13 eV. In addition, simulated results found that the size and spacing of the Al nanowires, as well as the embedding material were shown to have a large impact on the type of surface plasmon energies that can be generated in the material. Using electromagnetic modelling, we have identified the modes and illustrated how they could be tuned further.publishedVersio

    Surface reactivity and cation non-stoichiometry in BaZr<sub>1−x</sub>Y<sub>x</sub>O<sub>3−δ</sub> (x = 0–0.2) exposed to CO<sub>2</sub> at elevated temperature

    Get PDF
    The reactivity of BaZr1−xYxO3−δ (x = 0–0.2) ceramics under 1 atm CO2 at 650 °C for up to 1000 h was investigated in order to elucidate possible degradation processes occurring when the material is applied as a proton-conducting electrolyte in electrochemical devices. The annealed ceramics were characterized by a range of techniques (SEM, TEM, GIXRD, XPS and SIMS) with respect to changes in the phase composition and microstructure. Formation of BaCO3 was observed on the surfaces of the annealed samples and the amount increased with time and was higher for the Y-doped compositions. The subsurface regions were found to be deficient in Ba and, in the case of the Y-doped compositions, enriched in Y in two distinct chemical states as identified by XPS. First-principles calculations showed that they were Y residing on the Zr and Ba-sites, respectively, and that local enrichment of Y both in bulk and on the surface attained a structure similar to Y2O3. Overall, it was substantiated that the reaction with CO2 mainly proceeded according to a defect chemical reaction involving transfer of Y to the Ba-site and consumption of BaZrO3 formula units. It was suggested that a similar degradation mechanism may occur in the case of Ba(OH)2 formation under high steam pressure conditions
    • …
    corecore