31 research outputs found

    Nanofibrous Photocatalytic Membranes Based on Tailored Anisotropic Gold/Ceria Nanoparticles

    Get PDF

    One‐Step Generation of Core–Gap–Shell Microcapsules for Stimuli‐Responsive Biomolecular Sensing

    No full text
    The versatile design of stimuli‐responsive microparticles embedding valuable biomolecules has great potential in a variety of engineering fields, such as sensors, actuators, drug delivery, and catalysis. Here, results are reported on thermoresponsive core–gap–shell (TCGS) microcapsules made of poly(N‐isopropylacrylamide) (PNIPAm), which encapsulate hydrophilic payloads in a simple and stable manner. These are realized by a one‐step microfluidic approach using the phase separation of a supersaturated aqueous solution of NIPAm. Various designs of the microcapsules are achieved by individual control of the swelling or by incorporating pH‐responsive comonomers of the inner core and outer shell. The gap, i.e., the space between the inner core and outer shell, can be loaded with cargo‐like nanoparticles. The outer shell can serve as a stimuli‐responsive gateway for the transport of smaller molecules from the external solution. It is shown that the TCGS microcapsules are suitable as temperature controllable glucose sensors and hold promise in the design of controllable enzymatic reactions. The proposed platform provides an avenue for developing a new‐generation of microparticles for diverse and efficient engineering applications

    Pine cone scale-inspired motile origami

    Get PDF
    Stimuli-sensitive hydrogels have received attention because of their potential applications in various fields. Stimuli-directed motion offers many practical applications, such as in drug delivery systems and actuators. Directed motion of asymmetric hydrogels has long been designed; however, few studies have investigated the motion control of symmetric hydrogels. We designed a pine cone scale-inspired movable temperature-sensitive symmetric hydrogel that contains Fe3O4. Alignment of Fe3O4 along the magnetic force is key in motion control in which Fe3O4 acts like fibers in a pine cone scale. Although a homogeneous temperature-sensitive hydrogel cannot respond to a temperature gradient, the Fe3O4-containing hydrogel demonstrates considerable bending motion. Varying degrees and directions of motion are easily facilitated by controlling the amount and alignment angle of the Fe3O4. The shape of the hydrogel layer also influences the morphological structure. This study introduced facile and low-cost methods to control various bending motions. These results can be applied to many fields of engineering, including industrial engineering.111Ysciescopu
    corecore