415 research outputs found

    Exact solution of Schrodinger equation for modified Kratzer's molecular potential with the position-dependent mass

    Full text link
    Exact solutions of Schrodinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied. PACS numbers: 03.65.-w; 03.65.Ge; 12.39.Fd Keywords: Morse potential, Kratzer potential, Position-dependent mass, Point canonical transformation, Effective mass Schr\"{o}dinger equation.Comment: 9 page

    Transit timing variation analysis of the low-mass brown dwarf KELT-1 b

    Get PDF
    We investigate whether there is a variation in the orbital period of the short-period brown dwarf-mass KELT-1 b, which is one of the best candidates to observe orbital decay. We obtain 19 high-precision transit light curves of the target using six different telescopes. We add all precise and complete transit light curves from open databases and the literature, as well as the available Transiting Exoplanet Survey Satellite (TESS) observations from sectors 17 and 57, to form a transit timing variation (TTV) diagram spanning more than 10 yr of observations. The analysis of the TTV diagram, however, is inconclusive in terms of a secular or periodic variation, hinting that the system might have synchronized. We update the transit ephemeris and determine an informative lower limit for the reduced tidal quality parameter of its host star of Q ′⋆>(8.5±3.9)×106 assuming that the stellar rotation is not yet synchronized. Using our new photometric observations, published light curves, the TESS data, archival radial velocities, and broadband magnitudes, we also update the measured parameters of the system. Our results are in good agreement with those found in previous analyses

    Effective Mass Dirac-Morse Problem with any kappa-value

    Full text link
    The Dirac-Morse problem are investigated within the framework of an approximation to the term proportional to 1/r21/r^2 in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any κ\kappa-value. It is also studied the approximate energy eigenvalues, and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.Comment: 12 page

    Nitrogenase MoFe-Protein at 1.16 Ã… Resolution: A Central Ligand in the FeMo-Cofactor

    Get PDF
    A high-resolution crystallographic analysis of the nitrogenase MoFe-protein reveals a previously unrecognized ligand coordinated to six iron atoms in the center of the catalytically essential FeMo-cofactor. The electron density for this ligand is masked in structures with resolutions lower than 1.55 angstroms, owing to Fourier series termination ripples from the surrounding iron and sulfur atoms in the cofactor. The central atom completes an approximate tetrahedral coordination for the six iron atoms, instead of the trigonal coordination proposed on the basis of lower resolution structures. The crystallographic refinement at 1.16 angstrom resolution is consistent with this newly detected component being a light element, most plausibly nitrogen. The presence of a nitrogen atom in the cofactor would have important implications for the mechanism of dinitrogen reduction by nitrogenase

    Analytical Solutions of Klein-Gordon Equation with Position-Dependent Mass for q-Parameter Poschl-Teller potential

    Get PDF
    The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.Comment: 10 page

    Exponential Type Complex and non-Hermitian Potentials in PT-Symmetric Quantum Mechanics

    Get PDF
    Using the NU method [A.F.Nikiforov, V.B.Uvarov, Special Functions of Mathematical Physics, Birkhauser,Basel,1988], we investigated the real eigenvalues of the complex and/or PTPT- symmetric, non-Hermitian and the exponential type systems, such as Poschl-Teller and Morse potentials.Comment: 14 pages, Late

    Transit timing variation analysis of the low-mass brown dwarf KELT-1 b

    Get PDF
    We investigate whether there is a variation in the orbital period of the short-period brown dwarf-mass KELT-1 b, which is one of the best candidates to observe orbital decay. We obtain 19 high-precision transit light curves of the target using six different telescopes. We add all precise and complete transit light curves from open databases and the literature, as well as the available TESS observations from sectors 17 and 57, to form a transit timing variation (TTV) diagram spanning more than 10 years of observations. The analysis of the TTV diagram, however, is inconclusive in terms of a secular or periodic variation, hinting that the system might have synchronized. We update the transit ephemeris and determine an informative lower limit for the reduced tidal quality parameter of its host star of Q′⋆>(8.5±3.9)×106 assuming that the stellar rotation is not yet synchronised. Using our new photometric observations, published light curves, the TESS data, archival radial velocities and broadband magnitudes, we also update the measured parameters of the system. Our results are in good agreement with those found in previous analyses

    Approximate Solution of the effective mass Klein-Gordon Equation for the Hulthen Potential with any Angular Momentum

    Full text link
    The radial part of the effective mass Klein-Gordon equation for the Hulthen potential is solved by making an approximation to the centrifugal potential. The Nikiforov-Uvarov method is used in the calculations. Energy spectra and the corresponding eigenfunctions are computed. Results are also given for the case of constant mass.Comment: 12 page

    A new approach to the exact solutions of the effective mass Schrodinger equation

    Get PDF
    Effective mass Schrodinger equation is solved exactly for a given potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function. The effective mass Schrodinger equation is also solved for the Morse potential transforming to the constant mass Schr\"{o}dinger equation for a potential. One can also get solution of the effective mass Schrodinger equation starting from the constant mass Schrodinger equation.Comment: 14 page

    Acute kidney injury prediction for non-critical care patients: a retrospective external and internal validation study

    Full text link
    Background: Acute kidney injury (AKI), the decline of kidney excretory function, occurs in up to 18% of hospitalized admissions. Progression of AKI may lead to irreversible kidney damage. Methods: This retrospective cohort study includes adult patients admitted to a non-intensive care unit at the University of Pittsburgh Medical Center (UPMC) (n = 46,815) and University of Florida Health (UFH) (n = 127,202). We developed and compared deep learning and conventional machine learning models to predict progression to Stage 2 or higher AKI within the next 48 hours. We trained local models for each site (UFH Model trained on UFH, UPMC Model trained on UPMC) and a separate model with a development cohort of patients from both sites (UFH-UPMC Model). We internally and externally validated the models on each site and performed subgroup analyses across sex and race. Results: Stage 2 or higher AKI occurred in 3% (n=3,257) and 8% (n=2,296) of UFH and UPMC patients, respectively. Area under the receiver operating curve values (AUROC) for the UFH test cohort ranged between 0.77 (UPMC Model) and 0.81 (UFH Model), while AUROC values ranged between 0.79 (UFH Model) and 0.83 (UPMC Model) for the UPMC test cohort. UFH-UPMC Model achieved an AUROC of 0.81 (95% confidence interval [CI] [0.80, 0.83]) for UFH and 0.82 (95% CI [0.81,0.84]) for UPMC test cohorts; an area under the precision recall curve values (AUPRC) of 0.6 (95% CI, [0.05, 0.06]) for UFH and 0.13 (95% CI, [0.11,0.15]) for UPMC test cohorts. Kinetic estimated glomerular filtration rate, nephrotoxic drug burden and blood urea nitrogen remained the top three features with the highest influence across the models and health centers. Conclusion: Locally developed models displayed marginally reduced discrimination when tested on another institution, while the top set of influencing features remained the same across the models and sites
    • …
    corecore