44 research outputs found

    Post-implantation clinical cost analysis between transcutaneous and percutaneous bone conduction devices

    Get PDF
    Introduction: Bone conduction devices (BCD) are effective for hearing rehabilitation in patients with conductive and mixed hearing loss or single-sided deafness. Transcutaneous bone conduction devices (tBCD) seem to lead to fewer soft tissue complications than percutaneous BCDs (pBCD) but have other drawbacks such as MRI incompatibility and higher costs. Previous cost analyses have shown a cost advantage of tBCDs. The purpose of this study is to compare long-term post-implantations costs between percutaneous and transcutaneous BCDs. Materials and methods: Retrospective data from 77 patients implanted in a tertiary referral centre with a pBCD (n = 34), tBCD (n = 43; passive (tpasBCD; n = 34) and active (tactBCD; n = 9) and a reference group who underwent cochlear implantation (CI; n = 34), were included in a clinical cost analysis. Post-implantation costs were determined as the sum of consultation (medical and audiological) and additional (all post-operative care) costs. Median (cumulative) costs per device incurred for the different cohorts were compared at 1, 3 and 5 years after implantation. Results: After 5 years, the total post-implantation costs of the pBCD vs tpasBCD were not significantly different (€1550.7 [IQR 1174.6–2797.4] vs €2266.9 [IQR 1314.1–3535.3], p = 0.185), nor was there a significant difference between pBCD vs tactBCD (€1550.7 [1174.6–2797.4] vs €1428.8 [1277.3–1760.4], p = 0.550). Additional post-implantation costs were significantly highest in the tpasBCD cohort at all moments of follow-up. Conclusion: Total costs related to post-operative rehabilitation and treatments are comparable between percutaneous and transcutaneous BCDs up to 5 years after implantation. Complications related to passive transcutaneous bone conduction devices appeared significantly more expensive after implantation due to more frequent explantations.</p

    Post-implantation clinical cost analysis between transcutaneous and percutaneous bone conduction devices

    Get PDF
    Introduction: Bone conduction devices (BCD) are effective for hearing rehabilitation in patients with conductive and mixed hearing loss or single-sided deafness. Transcutaneous bone conduction devices (tBCD) seem to lead to fewer soft tissue complications than percutaneous BCDs (pBCD) but have other drawbacks such as MRI incompatibility and higher costs. Previous cost analyses have shown a cost advantage of tBCDs. The purpose of this study is to compare long-term post-implantations costs between percutaneous and transcutaneous BCDs. Materials and methods: Retrospective data from 77 patients implanted in a tertiary referral centre with a pBCD (n = 34), tBCD (n = 43; passive (tpasBCD; n = 34) and active (tactBCD; n = 9) and a reference group who underwent cochlear implantation (CI; n = 34), were included in a clinical cost analysis. Post-implantation costs were determined as the sum of consultation (medical and audiological) and additional (all post-operative care) costs. Median (cumulative) costs per device incurred for the different cohorts were compared at 1, 3 and 5 years after implantation. Results: After 5 years, the total post-implantation costs of the pBCD vs tpasBCD were not significantly different (€1550.7 [IQR 1174.6–2797.4] vs €2266.9 [IQR 1314.1–3535.3], p = 0.185), nor was there a significant difference between pBCD vs tactBCD (€1550.7 [1174.6–2797.4] vs €1428.8 [1277.3–1760.4], p = 0.550). Additional post-implantation costs were significantly highest in the tpasBCD cohort at all moments of follow-up. Conclusion: Total costs related to post-operative rehabilitation and treatments are comparable between percutaneous and transcutaneous BCDs up to 5 years after implantation. Complications related to passive transcutaneous bone conduction devices appeared significantly more expensive after implantation due to more frequent explantations.</p

    Prediction of obstructive sleep apnea:comparative performance of three screening instruments on the apnea-hypopnea index and the oxygen desaturation index

    Get PDF
    PURPOSE: To evaluate the performance of the NoSAS (neck, obesity, snoring, age, sex) score, the STOP-Bang (snoring, tiredness, observed apneas, blood pressure, body mass index, age, neck circumference, gender) questionnaire, and the Epworth sleepiness score (ESS) as a screening tool for obstructive sleep apnea (OSA) severity based on the apnea-hypopnea index (AHI) and the oxygen desaturation index (ODI). METHODS: Data from 235 patients who were monitored by ambulant polysomnography (PSG) were retrospectively analyzed. OSA severity was classified based on the AHI; similar classification categories were made based on the ODI. Discrimination was assessed by the area under the curve (AUC), while predictive parameters were calculated by four-grid contingency tables. RESULTS: The NoSAS score and the STOP-Bang questionnaire were both equally adequate screening tools for the AHI and the ODI with AUC ranging from 0.695 to 0.767 and 0.684 to 0.767, respectively. Both questionnaires perform better when used as a continuous variable. The ESS did not show adequate discrimination for screening for OSA (AUC ranging from 0.450 to 0.525). Male gender, age, and BMI proved to be the strongest individual predictors in this cohort. CONCLUSION: This is the first study to evaluate the predictive performance of three different screening instruments with respect to both the AHI and the ODI. This is important, due to increasing evidence that the ODI may have a higher reproducibility in the clinical setting. The NoSAS score and the STOP-Bang questionnaire proved to be equally adequate to predict OSA severity based on both the AHI and the ODI. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11325-020-02219-6) contains supplementary material, which is available to authorized users

    Clinical Value of Longitudinal Serum Neurofilament Light Chain in Prodromal Genetic Frontotemporal Dementia

    Get PDF
    BACKGROUND AND OBJECTIVES: Elevated serum neurofilament light chain (NfL) is used to identify carriers of genetic frontotemporal dementia (FTD) pathogenic variants approaching prodromal conversion. Yet, the magnitude and timeline of NfL increase are still unclear. Here, we investigated the predictive and early diagnostic value of longitudinal serum NfL for the prodromal conversion in genetic FTD. METHODS: In a longitudinal observational cohort study of genetic FTD pathogenic variant carriers, we examined the diagnostic accuracy and conversion risk associated with cross-sectional and longitudinal NfL. Time periods relative to prodromal conversion (&gt;3, 3-1.5, 1.5-0 years before; 0-1.5 years after) were compared with values of participants who did not convert. Next, we modeled longitudinal NfL and MRI volume trajectories to determine their timeline.RESULTS: We included 21 participants who converted (5 chromosome 9 open-reading frame 72 [C9orf72], 10 progranulin [GRN], 5 microtubule-associated protein tau [MAPT], and 1 TAR DNA-binding protein [TARDBP]) and 61 who did not (20 C9orf72, 30 GRN, and 11 MAPT). Participants who converted had higher NfL levels at all examined periods before prodromal conversion (median values 14.0-18.2 pg/mL; betas = 0.4-0.7, standard error [SE] = 0.1, p &lt; 0.046) than those who did not (6.5 pg/mL) and showed further increase 0-1.5 years after conversion (28.4 pg/mL; beta = 1.0, SE = 0.1, p &lt; 0.001). Annualized longitudinal NfL change was only significantly higher in participants who converted (vs. participants who did not) 0-1.5 years after conversion (beta = 1.2, SE = 0.3, p = 0.001). Diagnostic accuracy of cross-sectional NfL for prodromal conversion (vs. nonconversion) was good-to-excellent at time periods before conversion (area under the curve range: 0.72-0.92), improved 0-1.5 years after conversion (0.94-0.97), and outperformed annualized longitudinal change (0.76-0.84). NfL increase in participants who converted occurred earlier than frontotemporal MRI volume change and differed by genetic group and clinical phenotypes. Higher NfL corresponded to increased conversion risk (hazard ratio: cross-sectional = 6.7 [95% CI 3.3-13.7]; longitudinal = 13.0 [95% CI 4.0-42.8]; p &lt; 0.001), but conversion-free follow-up time varied greatly across participants. DISCUSSION: NfL increase discriminates individuals who convert to prodromal FTD from those who do not, preceding significant frontotemporal MRI volume loss. However, NfL alone is limited in predicting the exact timing of prodromal conversion. NfL levels also vary depending on underlying variant-carrying genes and clinical phenotypes. These findings help to guide participant recruitment for clinical trials targeting prodromal genetic FTD.</p

    Four subgroups based on tau levels in Alzheimer's disease observed in two independent cohorts

    Get PDF
    BackgroundAs Alzheimer's disease (AD) pathology presents decades before dementia manifests, unbiased biomarker cut-points may more closely reflect presence of pathology than clinically defined cut-points. Currently, unbiased cerebrospinal fluid (CSF) tau cut-points are lacking.MethodsWe investigated CSF t-tau and p-tau cut-points across the clinical spectrum using Gaussian mixture modelling, in two independent cohorts (Amsterdam Dementia Cohort and ADNI).ResultsIndividuals with normal cognition (NC) (total n =1111), mild cognitive impairment (MCI) (total n =1213) and Alzheimer's disease dementia (AD) (total n =1524) were included. In both cohorts, four CSF t- and p-tau distributions and three corresponding cut-points were identified. Increasingly high tau subgroups were characterized by steeper MMSE decline and higher progression risk to AD (cohort/platform-dependent HR, t-tau 1.9-21.3; p-tau 2.2-9.5).LimitationsThe number of subjects in some subgroups and subanalyses was small, especially in the highest tau subgroup and in tau PET analyses.ConclusionsIn two independent cohorts, t-tau and p-tau levels showed four subgroups. Increasingly high tau subgroups were associated with faster clinical decline, suggesting our approach may aid in more precise prognoses

    Plasma Markers of Alzheimer's Disease Pathology, Neuronal Injury, and Astrocytic Activation and MRI Load of Vascular Pathology and Neurodegeneration: The SMART-MR Study

    Get PDF
    BACKGROUND: Two of the main causes for dementia are Alzheimer's disease (AD) and vascular pathology, with most patients showing mixed pathology. Plasma biomarkers for Alzheimer's disease-related pathology have recently emerged, including Aβ (amyloid-beta), p-tau (phosphorylated tau), NfL (neurofilament light), and GFAP (glial fibrillary acidic protein). There is a current gap in the literature regarding whether there is an association between these plasma biomarkers with vascular pathology and neurodegeneration. METHODS AND RESULTS: Cross-sectional data from 594 individuals (mean [SD] age: 64 [8] years; 17% female) were included from the SMART-MR (Second Manifestations of Arterial Disease-Magnetic Resonance) study, a prospective cohort study of individuals with a history of arterial disease. Plasma markers were assessed using single molecular array assays (Quanterix). Magnetic resonance imaging markers included white matter hyperintensity volume, presence of infarcts (yes/no), total brain volume, and hippocampal volume assessed on 1.5T magnetic resonance imaging. Linear regressions were performed for each standardized plasma marker with white matter hyperintensity volume, total brain volume, and hippocampal volume as separate outcomes, correcting for age, sex, education, and intracranial volume. Logistic regressions were performed for the presence of lacunar and cortical infarcts. Higher p-tau181 was associated with larger white matter hyperintensity volume ( b per SD increase=0.16 [95% CI, 0.06-0.26], P=0.015). Higher NfL ( b=-5.63, [95% CI, -8.95 to -2.31], P=0.015) was associated with lower total brain volume and the presence of infarcts (odds ratio [OR], 1.42 [95% CI, 1.13-1.78], P=0.039). Higher GFAP levels were associated with cortical infarcts (OR, 1.45 [95% CI, 1.09-1.92], P=0.010). CONCLUSIONS: Plasma biomarkers that have been associated with tau pathology, axonal injury, and astrocytic activation are related to magnetic resonance imagingmarkers of vascular pathology and neurodegeneration in patients with manifest arterial disease

    CSF proteomics in autosomal dominant Alzheimer's disease highlights parallels with sporadic disease

    Get PDF
    Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q &lt; 0.05). The most strongly upregulated proteins (fold change &gt;1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P &lt; 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.</p
    corecore