4 research outputs found

    Bimodal Targeting of Human Leukocytes by Fc- And CpG-Decorated Polymersomes to Tune Immune Induction

    Get PDF
    The use of well-defined nanovesicles composed of amphiphilic block copolymers (polymersomes) for delivery of adjuvants and antigens is a promising strategy for vaccine development. However, the potency of nanoparticle vaccines depends on efficient interaction with and activation of cells involved in antigen presentation, which can be achieved by targeting cellular receptors. Here, we showed that the Fc fragment display on the polymersome surface resulted in markedly improved interactions with granulocytes, monocytes, and NK cells, while for "naked"polymersomes, virtually no binding to leukocytes was observed. Moreover, CpG-decorated polymersomes were found to also interact with T and/or B cells. Interestingly, whole blood stimulations with Fc fragment and CpG-decorated polymersomes induced interleukin (IL)-6, IL-8, and TNF-α production, while naked polymersomes did not induce any cytokine production. In conclusion, specific immune induction by polymersomes can be controlled using bimodal targeting of different immune receptors, which is an essential feature for targeted vaccine delivery

    Opposing Effects of Interleukin-36γ and Interleukin-38 on Trained Immunity

    No full text
    Trained immunity is the process of long-term functional reprogramming (a de facto innate immune memory) of innate immune cells such as monocytes and macrophages after an exposure to pathogens, vaccines, or their ligands. The induction of trained immunity is mediated through epigenetic and metabolic mechanisms. Apart from exogenous stimuli, trained immunity can be induced by endogenous compounds such as oxidized LDL, urate, fumarate, but also cytokines including IL-1α and IL-1β. Here, we show that also recombinant IL-36γ, a pro-inflammatory cytokine of the IL-1-family, is able to induce trained immunity in primary human monocytes, demonstrated by higher cytokine responses and an increase in cellular metabolic pathways both regulated by epigenetic histone modifications. These effects could be inhibited by the IL-36 receptor antagonist as well as by IL-38, an anti-inflammatory cytokine of the IL-1 family which shares its main receptor with IL-36 (IL-1R6). Further, we demonstrated that trained immunity induced by IL-36γ is mediated by NF-κB and mTOR signaling. The inhibitory effect of IL-38 on IL-36γ-induced trained immunity was confirmed in experiments using bone marrow of IL-38KO and WT mice. These results indicate that exposure to IL-36γ results in long-term pro-inflammatory changes in monocytes which can be inhibited by IL-38. Recombinant IL-38 could therefore potentially be used as a therapeutic intervention for diseases characterized by exacerbated trained immunity

    Effect of exogenous IL-37 on immune cells from a patient carrying a potential IL37 loss-of-function variant: A case study

    No full text
    INTRODUCTION: Chronic inflammatory or autoimmune diseases are commonly treated with immunosuppressive medication such as NSAIDs, corticosteroids, or antibodies against specific cytokines (TNF, IL-1 IL-17, IL-23, etc.) or signalling cascades (e.g. JAK-STAT inhibitors). Using sequencing data to locate genetic mutations in relevant genes allows the identification of alternative targets in a patient-tailored therapy setting. Interleukin (IL)-37 is an anti-inflammatory cytokine with broad effects on innate and adaptive immune cell function. Dysfunctional IL-37 expression or signalling is linked to various autoinflammatory disorders. The administration of recombinant IL-37 to hyperinflammatory patients that are non-responsive to standard treatment bears the potential to alleviate symptoms. METHODS: In this case study, the (hyper)responsiveness of immune cell subsets was investigated in a single patient with a seronegative autoimmune disorder who carries a heterozygous stop-gain variant in IL37 (IL37 Chr2(GRCh37):g.113670640G > A NM_014439.3:c.51G > A p.(Trp17*)). As the patient has been non-responsive to blockage of TNF or IL-1 by Etanercept or Anakinra, respectively, additional in-vitro experiments were set out to elucidate whether treatment with recombinant IL-37 could normalise observed immune cell functions. FINDINGS: Characterisation of immune cell function showed no elevated overall production of acute-phase pro-inflammatory cytokines by patient PBMCs and neutrophils at baseline or upon stimulation. T-cell responses were elevated, as was the metabolic activity and IL-1Ra production of PBMCs at baseline. The identified stop-gain variant in IL37 does not result in the absence of the protein in circulation. In line with this, treatment with recombinant IL-37 did overall not dampen immune responses with the exception of the complete suppression of IL-17. CONCLUSION: The heterozygous stop-gain variant in IL37 (IL37 NM_014439.3:c.51G > A p.(Trp17*)) is not of functional relevance as we observed no clear pro-inflammatory phenotype in immune cells of a patient carrying this variant

    Leishmania braziliensis enhances monocyte responses to promote anti-tumor activity

    No full text
    Summary: Innate immune cells can undergo long-term functional reprogramming after certain infections, a process called trained immunity (TI). Here, we focus on antigens of Leishmania braziliensis, which induced anti-tumor effects via trained immunity in human monocytes. We reveal that monocytes exposed to promastigote antigens of L. braziliensis develop an enhanced response to subsequent exposure to Toll-like receptor (TLR)2 or TLR4 ligands. Mechanistically, the induction of TI in monocytes by L. braziliensis is mediated by multiple pattern recognition receptors, changes in metabolism, and increased deposition of H3K4me3 at the promoter regions of immune genes. The administration of L. braziliensis exerts potent anti-tumor capabilities by delaying tumor growth and prolonging survival of mice with non-Hodgkin lymphoma. Our work reveals mechanisms of TI induced by L. braziliensis in vitro and identifies its potential for cancer immunotherapy
    corecore